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1. Introduction

In recent years, spatial dependence among cross-sectional units has become a standard notion of
economic research activitiesin relation to crimerates, social interaction, economic growth, spillover
effects, peer effects, price competition, tax competition, house prices, land prices, etc., and has
received an increasing attention by theoretical econometricians and applied researchers. Among
various models characterizing spatial dependence, the most popular one is perhaps spatial
autoregressive modds, in which outcome of a spatial unit is allowed to depend on a weighted
average of outcomes of its neighboring units and the values of the explanatory variables. Linear
and nonparametric spatial autoregressive mode s aretwo important classes of spatial autoregressive
models and both have their unique advantages. The linear spatial autoregressive modd is simple,
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easy to estimate and interpret, and can afford most efficient statistical inference if the linear
assumption is valid. The nonparametric spatial autoregressive mode makes no assumption on the
form of the regression function and lets the data determine a functional form tailored to the data,
henceit carries no risk of modd misspecification and can aff ord maximal flexibility and adaptability.
Partially linear spatial autoregressive mode, a class of models between the linear and nonparametric
spatial autoregressive models, inherits advantages from both sides by allowing the response variable
to depend on its spatial lag and some of the explanatory variables in a linear way and nonlinearly
relate to the remaining explanatory variables. Since the introduction in Su and Jin (2010), the
partially linear spatial autoregressive mode has gained considerable attention in recent years. For
example, Su and Jin (2010) developed a profile quasi-maximum likelihood method for partially
linear spatial autoregressivemode, and studied the asymptotic properties of theresulting estimators.
However, the estimation method proposed by Su and Jin (2010) requires the error terms to be
homoscedastic, which is rather restrictive in some empirical applications. To take the
heteroscedasticity of the error terminto account, Zhang (2013) and Zhang and Yang (2015a) proposed
the pairwise difference estimation method and the instrumental variable estimation method for the
partially linear spatial autoregressive model, respectively. Li and Me (2013,2016) studied related
test problemsin the partially linear spatial autoregressive model such as whether the nonparametric
component poses some interesting parametric forms and whether the parameters in the parametric
component are significant or more generally satisfy certain linear constraint conditions. Recently,
some researchers (Zhang and Sun, 2015; Zhang and Yang, 2015b; Ai and Zhang, 2017) extended
the partially linear spatial autoregressive model from cross-section data to panel data and studied
related estimation problems. More recently, Li and Guo (2020) considered the problem of variable
sdlection in the partially linear spatial autoregressive modd. They proposed a class of penalized
likdihood method to simultaneously select significant explanatory variables in the parametric
component and estimate the corresponding nonzero parameters, and studied asymptotic properties
of the resulting penalized estimator.

However, as far as the modd structureis concerned, the partially linear spatial autoregressive
modéd still has the following two drawbacks. First, when the number of the explanatory variables
inits nonparametric component is large, the partially linear spatial autoregressive modd still suffers
from the same drawbacks as the nonparametric spatial autoregressive modd such as the “ curse of
dimensionality”, the difficulty of interpretation and the lack of extrapolation capability. Second,
the partially linear spatial autoregressive model requires the explanatory variables in its
nonparametric component are all continuous, which is rather stringent in practical applications.

To avoid the above mentioned two drawbacks of the partially linear spatial autoregressive
model, Sun and Wu (2018) and Cheng et al. (2019) independently proposed partially linear single-
index spatial autoregressive model, in which the response variable linearly depends on its spatially
lagged term and some of the explanatory variables but nonlinearly depends on alinear combination
of the remaining explanatory variables. Specifically, let (X, Z, Y,) be the observation collected
fromthe ™" spatial unit (i = 1, ..., n), where X and Z are, respectively, thep x 1 and g x 1 vector of
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exogenous explanatory variables, and Y, is the response variable of interest. Then the sample form
of the proposed partialy linear single-index spatial autoregressive model is

Y =pY WY, + XB+n(Z )+, i=1..,n, (1)
j=i

wherewij(i =1, ...,n;i#]) arepre-specified exogenous spatial weightsthat determinethe structure
of neighborhood among spatial units, p is the spatial autoregressive parameter that measures the
intensity of spatial correlation among the observations of the response variable, 3 is the vector of
regression coefficients, o is the vector of index parameters, n(-) is the unknown link function, and
g(i =1, ..., n) arethe independent and identically distributed error terms with mean zero and finite
variance o2. To make modd (1) identifiable, we assume that both X and Z do not contain constant
term and at least one component of Z is continuous, the link function n(-) is differentiable and not
constant on the support of Z'a, and the index parameter vector o satisfies [lof| = 1 and its first
eement is positive, where ||-|| denotes the Euclidean norm.

Fromtheviewpoint of statistical modding, the partially linear single-index spatial autoregressive
modedl is of thefollowing three attractive advantages. First, by introducing index term Z'a, partially
linear single-index spatial autoregressive mode not only avoids the * curse of dimensionality” since
only one-dimensional nonparametric smoothing is involved regardless of the dimension of Z, but
also has a nice interpretation with the impact of Z on Y being described by the finite-dimensional
parameter vector and the univariate function n(-). Second, different from the partially linear spatial
autoregressive modd, the partially linear single-index spatial autoregressivemode allowsthediscrete
explanatory variables to appear in the nonparametric component. Third, through conducting a
hypothesis test or variable selection procedure on the index parameter vector o, one can identify
which explanatory variables in the nonparametric component have significant effect on the response
variable. However, it is quitedifficult to determinewhich explanatory variablesin thenonparametric
component are significant in the partially linear spatial autoregressive modd.

To estimate parameter vector (a', B', p)" and link function n(-) in mode (1), Sun and Wu
(2018) and Cheng et al. (2019) independently developed semiparametric generalized method of
moment (GM M) estimation method based on local linear smoothing method and generalized method
of moment, and studied asymptotic properties of theresulting estimators. The only difference between
Sun and Wu (2018) and Cheng et al. (2019) lies in the treatment of the error terms of modd (1). In
Sun and Wu (2018), the error terms of mode (1) are allowed to be heteroscedastic, while they are
assumed to be independent and identically distributed in Cheng et al. (2019). The semiparametric
GMM estimation method needs to select the instrumental variables and the choice of instrumental
variables may affect the finite sample performance of the method. More importantly, the optimal
choice of the instrumental variables is a very difficult problem. Furthermore, both Sun and Wu
(2018) and Cheng et al. (2019) did not consider the estimation of the error variance o2, whichis a
vital parameter in model (1) because it measures the intensity of influence of random factors or
some missing explanatory variables on the response variable.
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In this paper, we develop a new estimation method for mode (1) by combining local linear
smoothing method and quasi-maximum likelihood method. To be specific, wefirst treat the spatial
autoregressive parameter, index parameter vector and regression coefficient vector as if they were
known, and use the local linear smoothing method to estimate the link function n(-). Then the
quasi-maximum likelihood method is used to estimate the parameter vector 6 = (a', B7, p, 69).
Given the estimate of 0, the final estimate of n(-) can be obtained. Compared to the semiparametric
GMM estimation method of Sun and Wu (2018) and Cheng et al. (2019), the great advantage of our
method is that thereis no need to sdect the instrumental variables. Thus, our estimation method
may have better finite sample performance than the semiparametric GMM estimation method of
Sun and Wu (2018) and Cheng et al. (2019), which is empirically verified by a simulation study in
Section 5. Furthermore, our method can estimate the error variance 2. However, our estimation
method also has the following two drawbacks. First, although our method does not require the error
terms to follow normal distribution, it require the error terms to be homoscedastic, which is rather
restrictive in some empirical applications. Second, it may be quite difficult to extend our method to
modd (1) with multiple spatial weight matrices. In principle, we can formulate a profile quas
log-likdihood function for modd (1) with multiple spatial weight matrices. Nevertheless, during
the search of the profile quasi-maximum likelihood estimator, we need to focus on the parameter
space and evaluation of the determinant of the Jacobian transformation. For modd (1), the parameter
space in many circumstances can be taken to be (1, 1). But, the parameter space becomes rather
complicated for modd (1) with multiple spatial weight matrices. Even if the error terms of model
(1) with multiple spatial weight matrices are normally distributed, the profile quasi-maximum
likelihood method would be hard to implement as the determinant of the Jacobian transformation
becomes more complicated than that of moddl (1). However, the semiparametric GMM estimation
method of Sun and Wu (2018) and Cheng et al. (2019) can be easily extended to modd (1) with
multiple spatial weight matrices.

After fitting the partially linear single-index spatial autoregressive model (1), one of the
important inferential problemsisto check whether someinteresting parametric forms areappropriate
to the nonparametric component (namely, if a parametric spatial autoregressive modd is adequate).
This problem is vital important since a parametric spatial autoregressive moded, which is powerful
in explanation and easy to befitted, is more preferred unless a partially linear single-index spatial
autoregressive modd is necessary for a given spatial data-set. To address thisissue, we construct a
test statistic based on the difference of the maximal profile quasi log-likelihood under the alternative
modd and the maximal quasi log-likdihood under the null model. Some simulation studies are
conducted to assess the performance of the proposed estimation and test methods and the simulation
results show that both methods perform well in finite samples. The Boston housing price data are
analyzed to illustrate the application of the proposed estimation and test methods.

Therest of this paper is organized asfollows. In Section 2, weintroducethe proposed estimation
method in detail. In Section 3, we discuss some issues related to the practical implementation of the
proposed estimation method. A generalized likelihood ratio test statistic is constructed in Section 4
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to check the parametric form of thelink function n(-), in which a residual-based bootstrap procedure
is provided to approximate the null distribution of the resulting test statistic. Some simulation
studies are conducted to evaluate the finite sample performance of the proposed estimation and test
methods in Section 5. In Section 6, areal data example is given to demonstrate the application of
the proposed estimation and test methods. The paper is then concluded with some remarks in
Section 7.

2. Estimation Method

Letw, =00 =1 ..,n,w=W),Y=(,..,Y),X=(X,..X),Z2=(Z, .. Z)" n(Za) =
(M(Z,®),..n(Z, o))", and € = (g,, ..., €,)". Then model (1) can be expressed in matrix form as
Y=pWY + XB +n(Za) + €. 2
Let T(p) =1 —pWand g(8) = Y — pWY — XB —n(Za), where | be an identity matrix of order n
and 3 = (o', BT, p)". Then, the Gaussian quasi log-likelihood function of modd (2) is

logL(8,n(-) = —glog(chsz) +log(|T(p)|) - 2%28(8)T g(d). (3)

Since the unknown function n(-) is present in Equation (3), we propose estimating the finite-
dimensional parameter vector 6 by the following two-stage procedure:

(i) Estimaten(-) for fixed 6 and denote the resulting estimator as n,(-);

(ii) Pluginn,(-) into £(5) in (3) and obtain the estimator 9 of by using the quasi-maximum

likelihood method, and finally obtain the estimator m;(-) of n(:).

To estimate n(-) for fixed 6 in the first stage, we employ the local linear smoothing method
although other nonparametric smoothing methods such as the Nadaraya-\Watson kerne method and
the spline methods are applicable. The main reason for preferring thelocal linear smoothing method
is because it possesses many attractive properties such as high statistical efficiency in an asymptotic
minimax sense, design adaptation, and automatic boundary corrections (for details see Fan and
Gijbds, 1996).

Assume that the link function n(-) has continuous second order derivative. Then for any given
u in the domain of the index term U = Z7q, it follows from the Taylor’s expansion that

n(v) = (W) + n(U)(v-u)
for any v in a neighborhood of u. The local linear smoothing method finds n(u) and n'(u) by
minimizing the following locally weighted least squares function

2
2 Y =P WY, = XTB-n(u)-n'(u)(U; —u) | Ky (U;-u), (4)
i=1 j=1
whereU, = ZTa, and K, (-) = K(-/h)/h with K(-), being a kernel function defined on 9? and h being a
bandwidth.
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Let W(u) = (n(u), n'(u)", W(u, o) = diag(K,(U, — ), ..., K(U_ — u)T, and Z(u, o) =

1 .. 1Y)
U -u - U,-u)’

Given 0, the solution of thewei ghted | east squares problem (4), that is, thelocal linear estimator
of W(u), can be expressed as
o) = Su, a) [T(p)Y - XB],
where Su, o) = [Z(u, or)" W(u, a)Z(u, o)]™ Z(u, o))" W(u, o).
In particular, the local linear estimator of the link function n(u) is given by
ny(u) = su, )[T(p)Y - XB], Q)
where s(u, o) = €'Y, o) withe= (1, O)".
With n(-) in (3) being replaced by n,(u), we obtain the following profile quasi log-likelihood
function
n

1
logL(0) =~ 10g(2r5”") + log(T () o

[T(P)Y —=XB =My (Zo)]"[T(P)Y — XB —n,(Zo)], (6)
wheren (Za) = (,(Z[a), ..., ny(Z o))"
Maximizing log L(6) under the constraint conditions a’o. = 1, 6> >0 and -1 < p < 1 yields the

profile quasi-maximum likelihood estimator of 6 as 0. Then thefinal local linear estimator n(u) of
n(u) is taken as n,(u) with 6 being replaced by 0. As aresult, the residual vector is

£= (&, 8,) =Y —pWY — XB—n;(Za). (7)

3. Implementation of Estimation Method
3.1. An Iterative Algorithm
Since it is difficult to directly maximize the profile quasi log-likelihood function log L(6), we

propose an iterative algorithm to obtain the profile quasi-maximum likelihood estimator 6 of 6.
Step 1. Initialize 6© = (0@, BO, p©, 2?).
Step 2. Update c*™% = argmax _, ., 10g L(a™, ™, p™, 5?).
Step 3. Update p™® =argmax___, ,, logL(a™, B™, p, c*™Y).
Step 4. Update (o™, ™) = argmax , , cera10g L(ct, B, p™?, c*™).
Step 5. Update Steps 2-4 until convergence and denote the final estimator of (a, B, p, 0°) as

(G, B, p. 6%).then 6= (a7, ", p, 6%)".
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Remark 1. In Step 1, two methods can be used to obtain the initial estimator 6© of 6. For
example, the initial estimator 6@ can be obtained by fixing p = 0 and fitting a partially linear
single-index modd Y = XB + n(Za) + €. Alternatively, the initial estimator 6 can also be obtained
by fitting a linear spatial autoregressive modd Y = pWY + XB + Za + ¢ by the quasi-maximum
likelihood method. In Steps 2 and 3, both are one-dimensional nonlinear optimization problems
which can be solved by using, for example, the function fminbnd in the toolbox optimization of
the computer software Matlab. In Step 4, updating (a™%, B(™) is equivalent tofitting thefollowing
partially linear single-index mode

Y =XB +n(Za) + ¢, (8
where Y = Y — p™IWY, There are several estimation methods availablein the literatureto fit model
(8) such as the back-fitting method of Carroll et al. (1997), the penalized spline estimation method
of Yu and Ruppert (2002) the minimum average variance estimation method of Xia and Hardle
(2006), and the profile least squares method of Liang et al. (2010). Here we employ the profile
least squares method to estimate (a, ) in modd (8). The reason for such a choice is that the
estimator of (a, B) obtained by the profile least squares method is semiparametrically efficient (for
details, see Liang et al., 2010).

3.2. Bandwidth Selection
With estimated 9, we obtain an approximated nonparametric regression model

_ISZ\Ninj_XiTﬁzn(Lji)'i'gi’ i=1--n, 9)
=t

where U, =Z, G . Hence, the value of the bandwidth h can be determined by some data-driven
criteria such as therule of thumb (ROT), the cross validation (CV), the generalized cross validation
(GCV) and the corrected Akaika information criterion (AIC ). To reduce the heavy computational
burden, we employ the computationally simple rule of thumb (ROT) method to determine the value

of h, that is, h = 5,n5, where s, is the sample standard deviation of U_,---,U

N
4. Testing for Parametric form of Link Function
4.1. The Hypotheses

The nonparametric estimate of the link function n(-) can provide us with descriptive and graphical
information for exploratory data analysis. Using this information, it is possible to formulate a
parametric spatial autoregressive model that takes into account the features that emerged from the
preliminary analysis. To this end, we introduce a goodness-of -fit test to assess appropriateness of a
parametric spatial autoregressive model. Without loss of generality, we consider a simple linear
spatial autoregressive model under the null hypothesis. Accordingly, the null and alternative
hypotheses can be described as follows:
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H, :n(u) =y, +y,uforal u«< H, :n(u) # v, + y,ufor someu, (10
where y, and v, are two unknown constant parameters.

4.2. Construction of Test Statistic

Firstly, under the alternative hypothesis H,, we fit the partially linear single-index spatial
autoregressive modd (1) by the estimation method proposed in Section 2 and obtain the maximal
profile quasi log-likdihood as

I(H,)= —g[log(Zn) +1] —glog(n‘lRSSl) +1og(|T(p)]). (12)

where RSS =¢'¢.
Secondly, under the null hypothesis H,, model (1) becomes

Y, =pZ:Winj + X[ B+7vo+Z (ya)+¢, i=L--,n.

j#

(12)
Let B=(B", v,, y,0") and X =(X, 1, Z) with 1isann x 1 vector with all of its dements
being 1. Then, modd (12) can be further written as

Y =pWY + XB +e. (13)
Model (13) isastandard linear spatial autoregressive model, and the quasi-maximum likelihood
method can be used to fit this modd. The Gaussian quasi log-likeihood function of modd (13) is

_ 1 __ __
logL(6)= —glog(2n02)+ Iog(|T(p)|)—2—sz [T(p)Y-XB] [T(p)Y-XB], (14
where 0= (BT, o} GZ)T .
Given p, logL(6) can be partially maximized, which yields quasi-maximum likelihood

estimators of B and o2, respectively, as

B(p)=(X"X)*X"T(p)Y (15)
and
5°(p)=Y'T(p) MT (p)Y, (16)
where M, =1 — )?()?T)?)_l X" . substituting B(p) and &%(p) into (14) leads to the concentrated
quasi log-likelihood function of p as

logL(p)= —g[log(Zn) +1] —glog(c?2 (p))+1og(|T (p)])- (17)

24 Journal of Econometricsand Statistics, 1(1) © 2021



Estimati on and Specification Test of Partially Linear Single-index Spatial Autoregressive Model

Maximizing logL(p) subject to the constraint condition —1 < p < 1 gives the quasi-maximum
likelihood estimator { of p. Substituting § into B(p) and 52(p) yieldsthefinal estimator =B (p)

of B, the estimator 52 =3&2(5) of o? and, consequently, the estimator 6= (B", p, 5°)" of .
Therefore, the maximal quasi log-likelihood under H, can be expressed as

n n _ .
I(H,) =—E[Iog(2n)+1]—alog(n 'RSS ) +log(|T (5)]). (18)
—_= T ——
where RSS, =[T(;3)Y— XB} [T(;S)Y—XBJ is the residual sum of squares under H, and &
=n'RSS,.
Based on I(H,) and I(H,), a generalized likelihood ratio statistic is constructed as

B n RSS, |T(13)|
T_|(Hl)—'(Ho)—glog(RSSleog(mj- (19)

Intuitively, the null hypothesis H, should beregjected if the value of T is largeenough. Therefore,
the p-value of the test is

Po = Ry, (T21), (20)
where PHO(‘) refers to the probability computed under the null hypothesis H, and t is the observation
of T. For agiven significance leve a, if p, < a, reject H ; otherwise not rgject H,.

Remark 2. Although the test statistic T is derived for linear form of null hypothesis, our test
method can be done for other more general forms of null hypothesis like n(u) = f (u, y), where
f (u, y) is afunction whose form is completely known but with an unknown parameter vector y. In
this case, under the null hypothesis, mode (1) becomes a nonlinear spatial autoregressive model

Y ZPZWUYJ +XB+ f(ZiTa,y)ngi, i=1---,n
j=i
It is very difficult to fit this mode by the quasi-maximum likdihood method because of its
complexity. To overcome this difficulty, under the null hypothesis H,, we use the same parametric

estimators &, B, and p asthose obtained under the alternative hypothesis H,, and obtainan estimator
of y by solving the following nonlinear least squares function

12
n

S(1)= 3| Y -pYwY, ~XB-(2')
i=1| j=1 i
Then, the resulting residual sum of squares under the null and alternative hypotheses are

12
n

RSS,=2| Y -p2 WY, - X'B~ 1(2d.q)
L 1=

i=1
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and

2
RSSl:Z Y - 6ZV\IIJYJ - XiTB —-N; (ZiT &)}
i=1 j=1
Thus, for null hypothesis like n(u) = f (u, y), the test statistic T becomes

1 _NRSS -RS5
2 RS§

4.3. Calculation of the p-value

To calculate the p-value of the proposed test, one of the commonly used methods is to derive the
asymptotic null distribution of the test statistic T. However, the presence of the spatially lagged
term of the response variable in the modd makes the derivation of the asymptotic null distribution
of the test statistic T very difficult. On the other hand, even if one can derive the asymptotic null
distribution of T, as pointed out by many researchers (Hall and Hart, 1990; Héardle and Mammen,
1993; Fan and Jiang, 2007), p-value computed by the asymptotic null distribution of thetest statistic
may beinvalid under the situation of finite sample sizes. Therefore, we propose a bootstrap procedure
to approximate the null distribution of the test statistic T.

Among the existing bootstrap sampling schemes, the residual-based bootstrap procedure has
been extensively used to approximate the null distribution of related test statistics in the literature
of the nonparametric and semi-parametric regression (Stute et al., 1998; Cai et al., 2000; Fan and
Huang, 2005; Fan and Jiang, 2005). Moreover, as pointed out by Ansdin (1988), it is crucial that
spatial structure must be preserved during data resampling in models with spatial dependence, and
particularly with a spatially lagged term of the response variable. Thus, we employ the residual-
based bootstrap procedure to approximate the null distribution of thetest statistic T. In our case, the
procedure can be described as follows.

Step 1. Based onthedataset { Y, X, Z} and a predetermined value of the bandwidth h, compute

~ . L. . A -~ = ~  =\T .
under H, the residual vector £ shownin (7) and centralize it to obtain scz(sl—s,---,sn —s) in

. = 1&- . = ~ . . .
which € =—Zsi. Furthermore, compute under H, the estimators  and p. With the estimation
Nz

results under H, and H,, compute the observed valuet of the test statistic T by (19).

Step 2. Draw abootstrap sampleg”™ = (€, ..., €,)" with replacement fromtheempirical distribution
function of &

Step 3. Generate Y* = (I —pW) (XB +¢") and calculate the bootstrap version T* of the test
statistic T by
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T =ﬂlog(RSSg]+ log ‘T(p )
2 \Rss ) H[r(3)
where RSS, and RSS; are, respectively, theresidual sum of squares obtained under H, and H, based
onthedataset {Y', X, Z}, and p* and p* are the estimators of p based on the data set {Y', X, Z}
under H, and H,, respectively.
Step 4. Repeat steps 2 and 3 m times and obtain a bootstrap sample of the test statistic T as
T,, ... T.. The p-valueis then estimated by

’ (21)

#{T T 2t

Po=—"""" (22)
m

where #A denotes the number of the dementsin a set A.

5. Simulation Studies

In this section, we investigate the finite sample performance of the proposed estimation and test
methods through simulation studies. In both simulation studies and real data analysis in Section 6,

we employ the Gaussian kernd function K (u) =%exp(—u2/2) and the bandwidth selection
T
procedure proposed in Section 3.2.

5.1. Spatial Layout and Design of Experiment

The spatial layout for simulation studies is taken as a square region with the length of each side
being | units. This type of spatial layout is of wide application backgrounds in the fied of remote
sensing. Thel x | lattice squares in the region, which leads to a sample size of n = 12, are designed
asthe spatial units at which the observations of the response variable and the explanatory variables
are made. These n spatial units are labeled by 1 to n with the order from left to right and from
bottom to top.

Given the above spatial layout, the spatial weight matrix W is constructed based on the Rook
contiguity and the exponential function of the distance between spatial units, respectively. For the
Rook contiguity, the standardized spatial weight matrix W is generated as follows:

(i) Let w, =1 if spatial unit j sharesacommon edgewith spatial unit i and Ietvvij =0 otherwise;

(ii) divide each dement W, by the corresponding row sum to form the standardized spatial

weight matrix W. For the latter way, the d ement W, of the spatial weight matrix Wistaken

as w, =exp(-d,) Zexp(—dik), where dij is the Euclidean distance between spatial units
i andj. -
We generate 500 data sets, each consisting of h = 49 and n = 100 random observations, from
the following partially linear single-index spatial autoregressive model
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Y =py WY, + X[B+n(Z o) +g, i=1-n, (23)

j#i
where X = (X, X, X )" (i = 1, ..., n) were randomly drawn from the normal distribution with zero

1 05 05
05 1085, 7 =(Z,, Z, Zy) inwhichZ (j=1,2 3)are
05 05 1
independent and uniformly distributed on interval (0, 1), a = (0.5774, 0,5774, 0.5774)", B = (0.5,
1.0, 1.5)7, and n(u) = sin(2ru). The value of the spatial autoregressive parameter p was taken to be
0.2, 0.5 and 0.8, respectively, to see theimpact of theintensity of the spatial dependence among the
observations of the response variable on the performance of the proposed estimation and test methods.
In order to investigate the influence of the error distribution on the performance of the proposed
estimation and test methods, we consider the following three types of error distribution whose
scales are adjusted such that they all have mean zero and variance 0.25:
() Normal distribution N(O, 0.25);

(1) Uniform distribution U (-/3/2,+/3/2);

mean vector and the covariance matrix

1
(111) Transformed and centralized chi-square distribution gxz (8) -1, where x2(8) denotes the
random variable of a chi-square distribution with 8 degrees of freedom.

5.2. Performance of the Proposed Estimation Method

Simulation results for the proposed estimator § of 6 under the given three types of error distribution
are, respectively, summarized in Tables 1-3, in which “Mean” and “ SD” stand for the mean and the
standard deviation of the 500 estimates of 6, respectively.

We summarize some empirical findings from Tables 1-3. First, we can seethat the bias and SD

for the estimator § of 6 are fairly small for almost all cases and they decrease dramatically when
the sample size n increases, which demonstrates that the proposed estimation method gives very
accurate estimate of 0. Second, as the degree of complexity of the spatial weght matrix W increases,

that is the proportion of nonzero elements in W, both the bias and SD for the estimator p of p

increase significantly, whereas the bias and SD of other estimators o, B and o? are little affected,
similar phenomenon is also observed in linear spatial autoregressive modes (Lee, 2004), partially
linear spatial autoregressivemode s (Su and Jin, 2010) and varying coefficient spatial autoregressive
models (Li and Chen, 2013). This is reasonable because the higher the proportion of nonzero
dementsin Wis, the stronger the spatial dependence of the response variable will be, which makes
it more difficult to estimate the spatial autoregressive parameter p. Third, it can be observed from
Tables 1-3 that the simulation results for § under the three types of error distribution have no
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Table 1: Simulation results for 6 under the error distribution N(0, 0.25).

3 ﬂl ﬂZ ﬂ3 P 02

,

) ,

W n p Index a,

Rook 49 0.2 Mean 05743 0576 05737 04998 0.9897 15031 0.1960 0.2138
SD 0.0546 0.058 0.0542 0.1052 0.1050 0.1060 0.0569 0.0439

05 Mean 05739 05674 05681 04928 1.0007 15068 0.4905 0.2154

SD 0.0674 0.1207 0.0833 0.1125 0.1085 0.1086 0.0519 0.0471

0.8 Mean 05673 05599 05543 04984 1.0090 14959 0.7903 0.2187

SD 0.0v61 0.1372 0.1816 0.1036 0.1192 0.1079 0.0360 0.0591

100 0.2 Mean 05728 05795 05769 0.5014 1.0017 1.4987 0.2014 0.2337
SD 0.0336 0.0327 0.0340 0.0676 0.0642 0.0708 0.0364 0.0330

05 Mean 05761 05739 05789 04983 1.0012 14988 0.4959 0.2320

SD 0.0356 0.0340 0.0355 0.0699 0.0694 0.0659 0.0330 0.0320

08 Mean 05781 05722 05717 04950 1.0048 14975 0.7972 0.2364

SD 0.0416 0.06190 .0776 0.0677 0.0655 0.0670 0.0199 0.0399

EXP 49 02 Mean 05691 05754 05793 0.4893 1.0065 14935 0.1485 0.2141
SD 0.0575 0.0562 0.0553 0.1050 0.1044 0.0996 0.1557 0.0455

05 Mean 05711 05756 05774 04997 0.9987 15008 0.4594 0.2128

SD 0.0553 0.0549 0.0550 0.1107 0.1023 0.1025 0.1369 0.0452

08 Mean 05749 05733 05665 05002 0.9963 14916 0.7346 0.2166

SD 0.0650 0.0719 0.1026 0.1053 0.1007 0.1014 0.1117 0.0507

100 0.2 Mean 05776 05751 05763 04974 10083 1.4982 0.1822 0.2345

SD 0.0339 0.0349 0.0334 0.0656 0.0694 0.0687 0.0869 0.0346

05 Mean 05737 05752 05797 05013 0.9973 14980 0.4832 0.2330

SD 0.0355 0.0367 0.0364 0.0651 0.0640 0.0632 0.0742 0.0333
08 Mean 05760 05775 05752 05050 1.0037 14954 0.7802 0.2343

SD 0.0349 0.0355 0.0378 0.0660 0.0683 0.0667 0.0535 0.0324

evident difference, which shows that the performance of the proposed estimator 0 of 0is quite
robust to the variation of the error distribution.
The finite sample performance of the estimator 1(-) of n(-) is evaluated by using the mean
square error (MSE) which is defined as
. 1 n, . 2
MSE () = . Z [n (uk) L (uk )J ’
0 k=1
where u, (k= 1, ..., n)) are some grid points that lie between the minimum value and maximum
value of {Ui: Z'e, i= 1,---,n}. In our simulation, we took n, = 100. Simulation results for the

proposed estimator under the given three types of error distribution are reported in Table 4.
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Table 2: Simulation results for under the error distribution U(-\/§/2, \/3/2) .

w n p Index a a, a, B, B, B, Yo, o
Rook 49 0.2 Mean 05697 05775 05768 0.5019 0.9979 14987 0.1970 0.2125
SD 0.0588 0.0548 0.0524 01025 0.1081 0.1005 0.0613 0.0349
05 Mean 05770 05722 05740 04902 1.0016 15055 0.4938 0.2130
SD 0.0567 0.0610 0.0575 0.1078 0.1073 0.1075 0.0494 0.0333
0.8 Mean 05713 05574 0.5522 05042 1.0037 14935 0.7926 0.2213
SD 0.0652 0.1500 0.1772 01085 0.1052 0.1090 0.0338 0.0516
100 0.2 Mean 05774 05781 05734 04981 09989 15013 0.1990 0.2323
SD 0.0340 0.0359 0.0347 0.0658 0.0688 0.0703 0.0387 0.0230
05 Mean 05767 05752 05768 0.5074 0.9931 15046 0.4944 0.2329
SD 0.0356 0.0361 0.0347 0.0687 0.0670 0.0692 0.0315 0.0232
0.8 Mean 05776 05688 0.5712 04981 09999 15030 0.7973 0.2369
SD 0.0419 0.0936 0.0784 0.0705 0.0709 0.0737 0.0202 0.0311
EXP 49 02 Mean 05730 05776 05737 05020 0.9909 1.5007 0.1541 0.2141
SD 0.0546 0.0534 0.0556 01012 0.1016 0.1041 0.1599 0.0321
05 Mean 05747 05761 05728 0.5025 0.9953 14962 0.4616 0.2136
SD 0.0587 0.0558 0.0570 0.1072 0.1073 0.1083 0.1257 0.0357
0.8 Mean 05726 05751 05718 0.4968 1.0053 14978 0.7505 0.2143
SD 0.0614 0.0852 0.0580 0.1092 0.1095 0.1132 0.1009 0.0358
100 0.2 Mean 05789 05769 05730 0.5003 09974 14996 0.1865 0.2329
SD 0.0366 0.0330 0.0368 0.0674 0.0693 0.0675 0.0909 0.0231
05 Mean 05792 05755 05744 04962 1.0009 15015 0.4858 0.2348
SD 0.0343 0.0327 0.0342 0.0704 0.0665 0.0646 0.0769 0.0240
0.8 Mean 05771 05774 05742 04954 10011 14995 0.7797 0.2331
SD 0.0341 0.0358 0.0369 0.0686 0.0747 0.0720 0.0519 0.0230

We can see from Table 4 that the M SE of the estimator 1(-) seems quite robust with respect to
the variation of the error distribution, the spatial weight matrix and the spatial autoregressive
parameter, and decreases remarkably as the sample size n increases.

5.3. Performance of the Proposed Test Method

In this subsection, we evaluate thefinite sample performance of the proposed test method, including
the validity of the bootstrap approximation to the null distribution of the test statistic and the power
of the test. To this end, we took the link function n(u) in (23) to be n(u) = u + ¢ sin(2ru), wherec
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1
Table 3: Simulation results for © under the error distribution §x2(8) -1,

W n p Index a

1 ,

2

a3 ﬂl ﬂZ ﬂ3 P 02

Rook 49 0.2 Mean 05739 05762 05732 05049 09974 14932 0.1889 0.2125

SD 0.0597 0.0547 0.0585 0.1048 0.1031 0.1038 0.0568 0.0536
05 Mean 05767 05654 05731 05019 0996 1.5009 0.4932 0.2116
SD 0.0551 0.0977 0.0820 0.1037 0.1068 0.1039 0.0507 0.0546

0.8 Mean 05723 05516 05439 05012 1.0040 1.499 0.7914 0.2221
SD 0.0772 0.1761 0.1885 0.1088 0.1063 0.1097 0.0348 0.0696

100 0.2 Mean 05755 05768 0.5766 05035 1.0000 14969 0.1971 0.2355
SD 0.0343 0.0354 0.0350 0.0769 0.0654 0.0638 0.0376 0.0429
05 Mean 05744 05783 05761 05039 1.0008 1.4968 0.4970 0.2339

SD 0.0351 0.0369 0.0344 0.0680 0.0676 0.0689 0.0294 0.0416
08 Mean 05776 05777 05736 04975 1.0048 1.4992 0.7979 0.2341
SD 0.0333 0.0352 0.0364 0.0694 0.0647 0.0674 0.0199 0.0415

EXP 49 02 Mean 05752 05720 05765 0.5005 1.0000 14935 0.1665 0.2103
SD 0.0562 0.0560 0.0572 0.1048 0.1082 0.1110 0.1503 0.0548

05 Mean 05685 05719 05819 04995 0.9971 1.4936 0.4555 0.2156
SD 0.0607 0.0605 0.0619 0.1038 0.1100 0.1077 0.1386 0.0608

08 Mean 05719 05747 05770 04985 1.0024 15027 0.7464 0.2155
SD 0.0570 0.0565 0.0572 0.1068 0.1059 0.1028 0.0988 0.0587

100 0.2 Mean 05782 05747 05757 05026 1.0004 14996 0.1835 0.2300
SD 0.0346 0.0374 0.0361 0.0681 0.0648 0.0703 0.0932 0.0404

05 Mean 05784 05782 05720 04992 1.0013 1.4977 0.4801 0.2317
SD 0.0349 0.0355 0.0375 0.0704 0.0658 0.0708 0.0750 0.0430

08 Mean 05781 05740 05768 05044 0.9980 1.4983 0.7795 0.2318
SD 0.0350 0.0366 0.0341 0.0652 0.0693 0.0620 0.0548 0.0419

is such a constant that will take different values for different purposes. Note that the null hypothesis
H, is true when ¢ = O while the alternative hypothesis H, holds with ¢ = 0.

In the simulation study performed here, we took the value of ¢ in the link function n(u) to be
0, 0.15, 0.30 and 0.45, respectively, to examine the validity of the bootstrap approximation to the
null distribution of the test statistic T and the power of thetest. The remainder of the experimental
design was kept to be the same as that in Subsections 5.1 and 5.2 except that the spatial weight
matrix was taken as the Rook and the spatial autoregressive parameter was taken to be 0.5. The
reason why we only considered the case of Rook spatial weight matrix and p = 0.5 is that the
involved computation is heavily huge and the simulation results under other cases arerather similar.
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Table 4: MSE index for n(-) in model (23).

w n o N(0, 0.25) U(—/3/2,4/3/2) %XZ(S) -1
Rook 49 0.2 0.0645 0.0668 0.0697
0.5 0.0740 0.0703 0.0685

0.8 0.0898 0.0847 0.0891

100 0.2 0.0418 0.0423 0.0427

0.5 0.0427 0.0410 0.0427

0.8 0.0441 0.0452 0.0413

Exp 49 0.2 0.0708 0.0737 0.0748
0.5 0.0814 0.0757 0.0790

0.8 0.1553 0.1174 0.1199

100 0.2 0.0447 0.0432 0.0413

0.5 0.0420 0.0466 0.0458

0.8 0.0514 0.0466 0.0477

For each given value of ¢ and each typeof the error distribution, we run 200 replications of the
test method and recorded the frequency of rgecting the null hypothesis under a given significance
level o (0.01,0.05 and 0.10) as the empirical size of the test under H, (that is, ¢ = 0) and the
empirical power of the test under H, (that is, ¢ # 0). And for each replication, the p-valuein (22)
was computed based on m = 500 bootstrap samples. The simulation results for the given three types
of the error distribution are reported in Table 5.

We conclude some empirical findings from Table 5. First, in all of the experimental settings,
the empirical sizes are all reasonably close to the corresponding significance levels o even for the
very small sample size of n = 49. This demonstrates that the proposed bootstrap procedure yields
an accurate approximation to the null distribution of the test statistic T at least on the right tail of
the null distribution on which the p-value of thetest is computed. Second, we can observe from the
resultsthat theempirical sizes have not evident differencefor thethreeerror distributions considered
here, which shows that the bootstrap approximation to the null distribution of the test statistic T is
quite robust to the variation of the error distribution. Third, the empirical power increases rapidly
as the alternative hypothesis deviates away from the null hypothesis or the sample size n increases,
which indicates that the proposed test method is powerful in identifying the linear form of the link
function. Fourth, the empirical power is also quite robust with respect to the variation of the error
distribution.

5.4. An Additional Simulation Study

According to comment 1 of the reviewer, we add a simulation study to compare the finite sample
performance of the proposed estimation method with that of the semiparametric GMM estimation
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Table 5: The rejection frequencies of testing for the linearity of link function n(-) in model (23).

49 100

Error distribution c 0.01 0.05 0.10 0.01 0.05 0.10

N(0, 0.25) 0 0 0.045 0.080 0.010 0.065 0.120
0.15 0.070 0.200 0.335 0.165 0.330 0.445
0.30 0.240 0.515 0.670 0.720 0.880 0.935
0.45 0.675 0.900 0.945 0.975 0.995 1.000

U(—/3/2,4/3/2) 0 0.025 0.055 0.095 0.010 0.045 0.115
0.15 0.050 0.185 0.240 0.105 0.275 0.400
0.30 0.240 0.495 0.625 0.750 0.900 0.935
0.45 0.630 0.880 0.915 0.985 0.995 0.995

1,

X (8)-1 0 0.015 0.065 0.140 0.012 0.035 0.125
0.15 0.080 0.205 0.295 0.090 0.290 0.440
0.30 0.375 0.555 0.660 0.710 0.875 0.925
0.45 0.710 0.885 0.920 0.975 1.000 1.000

method which independently developed by Sun and Wu (2018) and Cheng et al. (2019). Following
Sun and Wu (2018), we consider the following data generating process:

Z +Z,+7,)/\3 -
Y = 0.5ZwUYJ, +0.3X, +sin n[( at ub+ ,,3)/ a]
J#i —a

+0'3€1ﬁ’ i=1,-",n, (24)

where a=+/3/2-1.645/\12, b=+/3/2+1.645/\12, X(i = 1, ..., n) are drawn independently
from binomia distribution B(1, 0.5), Zij(j =1, 2, 3) are independently generated from uniform
distribution U(0, 1), e(i = 1, ..., n) are drawn independently from standard normal distribution
N(O, 1). The spatial weights wij(i,j =1, ..., n) are specified based on the spatial scenario in Case
(1991). To be specific, suppose there are R districts and each district has m members. Hence, the
samplesizeisn = Rm. Moreover, each neighbour of a member inadistrict is given equal weight. In
this case, the spatial weight matrix isW =1, ® B_, where ® is the Kronecher product and B, =
(Y(m-1))(1,17—1)with 1 beingam x 1 vector whose elements areall 1. Like that in Sun and
Wu (2018), we consider three values of (R, m) : (10, 10), (20, 10) and (20, 20), which corresponds
to the sample size 100, 200 and 400, respectively. Following Sun and Wu (2018), for each case, by
repeating both estimation procedures 400 times, we get the means, biases, standard deviations
(SDs) and mean squared errors (MSEs) for all parameter estimators. To evaluate the accuracy of
the estimate of the link function, we consider mean integrated squared error (MISE) of n(-) which
is defined as:
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MISE = E([[A(u)-n(u)] du).

We can seefrom Table 6 that, for theindex parameters a.;, o, and a.,, the spatial autoregressive
parameter p, and thelink function n(-), the proposed esti mation method gives more accurate estimate
than the semiparametric GMM estimation method which independently developed by Sun and Wu
(2018) and Cheng et al. (2019). One possible reason is that the instrumental variables use in Sun
and Wu (2018) and Cheng et al. (2019) may be not optimal, which affect the finite sample
performance of their method. However, for the regression coefficient 8, the semiparametric GMM
estimation method gives more accurate estimate than our method. Although this simulation study
shows that our method slightly outperforms the semiparametric GMM estimation method of Sun
and Wu (2018) and Cheng et al. (2019), overall comparison between two methods needs further
investigation.

Table 6: Simulation results for profile quasi-maximum likelihood estimate (PQMLE) and
semiparametric generalized method of moments estimate (SGMME)

PQMLE SGMME
(R,m) Parameter Mean Bias D MSE Mean Bias D MSE
(10, 10) o, 05743 -0.0030 0.0486 0.0024 05680 -0.0094 0.1344 0.0181
a, 05740 -0.0034 0.0491 0.0024 05533 -0.0241 0.1564 0.0250
o, 05776 0.0003 0.0482 0.0023 05556 -0.0218 0.1419 0.0205
B 0.3853 0.0853 0.0620 0.0111 0.3018 0.0018 0.0768 0.0059
p 0.4529 -0.0471 01039 0.0130 05634 0.0634 0.1327 0.0216
n() MISE = 0.0347 MISE = 0.1088
(20, 10) o, 05775 0.0002 0.0325 0.0011 05666 -0.0108 0.1111 0.0124
a, 05775 0.0002 0.0325 0.0011 05666 -0.0108 0.1111 0.0124
o, 05755 -0.0018 0.0330 0.0011 05666 -0.0108 0.1054 0.0112
B 0.3636 0.0636 0.0424 0.0058 0.3075 0.0075 0.0547 0.0030
p 0.4743 -0.0257 0.0633 0.0047 05887 0.0887 0.0742 0.0133
n() MISE = 0.0143 MISE = 0.0681
(20, 20) o, 05770 -0.0004 0.0236 0.0006 05662 -0.0112 0.0947 0.0090
a, 05774 0.0001 0.0233 0.0005 05664 -0.0110 0.0846 0.0072
o, 05761 -0.0012 0.0252 0.0006 05792 -0.0018 0.0839 0.0070
B 0.3524 0.0524 0.0297 0.0036 0.3003 0.0003 0.0332 0.0011
p 04774 -0.0226 0.0655 0.0048 05820 0.0820 0.0757 0.0124

MISE = 0.0128 MISE = 0.0591

=
=
-
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6. An Illustration Example

Inthis section, we take the well-known Boston housing price data as areal exampleto illustrate the
application of the proposed model and its estimation and test methods. The data consist of 506
observations of the median value (MV) of owner-occupied homesin 506 census tracts in the Boston
Standard Metropolitan Statistical Areain 1970, together with 13 variables which might explain the
variation of housing value (Harrison and Rubinfeld, 1978), and are now fredy available through
the GeoDa Center for Geospatial Analysis and Computation. The detailed description of these
variables is summarized in Table 7.

Intheliterature of statistics, many researchers employed the semiparametric regression models
with single-index term to analyze the Boston housing data. For example, Kong and Xia (2012)
explored the reationship between the median value of owner-occupied homes and the remaining
13 variablesby using a single-index quantile regression model. However, the single-index regression
maodel may be inappropriate to fit the data because some variables may have linear influence on the
housing price. To identify which variables have linear influence on the housing price, Zhang et al.
(2011) first employed an additive modd to fit the data and then applied a variable sdection procedure
to decide which variables have linear influence on the housing price. They concluded that variables
RAD and PTRATIO have linear influence on the response variable, variables CRIM, NOX, RM,
DIS, TAX and LSTAT have nonlinear influence on housing price, whilethe remaining five variables
ZN, INDUS, CHAS, AGE and B were removed from the final modd as insignificant variables. On

Table 7: Description of variables in Boston housing price data.

Variable Description

MV Median value of owner-occupied homesin $1,000 per tract
CRIM Per capitacrimerate per tract
ZN Proportion of atown’s residential 1and zoned for lots greater than 25,000 square feet

INDUS  Proportion of non-retail business acres per town
CHAS Charles River dummy variable (= 1if tract bounds the CharlesRiver; O otherwise)

NOX Nitrogen oxide concentration in pphm per town

RM Average number of rooms per dwelling

AGE Proportion of owner-occupied homes built prior to 1940 per tract

DIS Wei ghted average of distances of atract to five employment centersin the Boston region
RAD Index of atown’s accessihility to radial highways

TAX Full-value property tax rate per $10,000 per town

PTRATIO Pupil-teacher ratio by town school district

B 1000(Bk —0.63)2 in which Bk isthe proportion of blacks per tract

LSTAT  Proportion of population that isin the lower status per tract
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the other hand, according to the analysis results of many researchers (Pace and Gilley, 1997; Lesage
and Pace, 2009; Li and Mdi, 2013; Sun et al., 2014; Du et al., 2018; Liu et al., 2018), the spatial
dependence of the median value of owner-occupied homes is a non-ignorable factor that should be
considered in the analysis of the Boston housing data.

To take the spatial effects into account and allow more flexible interpretation of the
nonparametric component, we consider to fit the data via the following modd

Y :pZWiJYJ + XiTBHI(ZiTOC)ﬁLEu i=1--,n,
j#i
where n = 506, Z = log(log(CRIM), NOX, RM, DIS, log(TAX), log(LSTAT))", X = log(RAD,
PTRATIO)" and Y =log (MV). Thereason for taking the logarithm of MV as the response variable,
instead of MV itsdlf, is that the correation of log(MV) with the variables log(CRIM), DIS, RAD
and log(TAX) is much stronger than that of MV with these variables. The correation coefficient
with log(MV) is —0.5719 for log(CRIM), 0.3425 for DIS, —0.4868 for RAD and —0.5619 for
log(TAX), whereas the correlation coefficient with MV is—04573 for log(CRIM), 0.2493 for DIS,
—0.3848 for RAD and —0.4783 for log(TAX). Another reason for using the logarithm of CRIM as
the explanatory variable is that the observations of CRIM are uniformly distributed on the interval
(-6, 6) with the aid of logarithmic transformation, which can be witnessed as wdl from Figures
1(a) and 1(b). By comparison, the logarithmic transformation for variables TAX and LSTAT is
taken only to aleviate the trouble caused by big gaps in the domain, which can be seen from
Figures 1(c)-1(f).
As for the choice of the spatial weight matrix W = (vvij), following the practice in Pace and
Gilley (1997), we take the element W, of Wto be

(25)

W, = max(l—%,oj, (26)

0

where d, is the Euclidean distance calculated in terms of the longitude and Iatitude coordinates of
census tract, and d, is athreshold distance which is used to control the degree of spatial dependence
of the response variable. If the distance between two census tracts is far enough, the spatial
dependence between them will probably attenuate. In order to alleviate the potential effect of tiny
weights on the data analysis, a threshold distance is used to set the tiny weights to be zero.
Furthermore, we normalize the spatial weight matrix such that the sum of each row of Wis equal to
1. Inour analysis, we take the value of d, to be 0.05, which yields a spatial weight matrix with
19.1% nonzero dements.

Wefirst apply the proposed test method to check the linearity of the link function n(-) in mode
(25), in which m = 1000 bootstrap samples were drawn to compute the p-value of the test. The
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Fugure 1: The scatter plots of log(MV) versus CRIM, log (CRIM), TAX, log(TAX), LSTAT and
log(LSTAT).

resulting p-value is 0, which indicates that we should reject the null hypothesis of linearity. This
provides strong evidence that modd (25) is more appropriate than the traditional linear spatial
autoregressive modd for fitting the Boston housing price data.

Then we use the proposed estimation method to estimate the unknown parameters and function
in mode (25). The estimators of the parameter vector 6 and the link function n(-) are reported in
Table 8 and Figure 2, respectively.

We summary some interesting empirical findings from the above analysis as follows. First, the
estimated link function shows evident nonlinear decreasing trend as the value of Z" ¢, increases,
which together with the estimate of o indicate that the explanatory variables log(CRIM), NOX,
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Table 8: Estimated parameter vector 0 in model (25).

a 2

1 (XZ (13 (14 (XS (XG Bl BZ [ o

0.0882 0.3854 -0.0643 0.0945 0.6441 0.6448 0.0259 -0.0274 0.2379 0.0310

DIS, log(TAX) and log(LSTAT) in the nonparametric component have negative impact on the
housing price, while the influence of the explanatory variable RM is positive. Among them, NOX,
and are three very influential adverse factors on the housing price. This is reasonable because
peopleprefer for better air quality, lower TAT and higher educational status neighborhoods. Second,
the estimated regression coefficient of X, is positive, which indicates that the accessibility to radial
highways (RAD) has a positive impact on the housing price. This is reasonable because the larger
the value of RAD is, the less time will be spent on commuting. The estimated regression coefficient
of X, is negative, which reveals that the housing price would decrease as the pupil-teacher ratio
increases. Although the relation between PTRATIO and school quality is not completely clear, a
lower PTRATIO should imply more individual attention from the teacher. Third, the estimated
spatial autoregressive parameter is 0.2379, which means that the housing prices in a neighborhood
do affect each other. This is a true phenomenon in real world.
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Fugure 2: The estimated link function in model (25)
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7. Concluding Remarks

In this paper, we developed a new estimation method for the partially linear single-index spatial
autoregressive model by combining the local linear smoothing method and the quasi-maximum
likelihood method. The greatest advantage of our estimation method over the existing semiparametric
GMM estimation method of Sun and Wu (2018) and Cheng et al. (2019) is that thereis no need to
sdlect the instrumental variables. In comparison with the semiparametric GMM estimation method
of Sun and Wu (2018) and Cheng et al. (2019), our estimation method has the following two
drawbacks. First, our method requires the mode error terms to be independent and identically
distributed, which is rather restrictive in some empirical applications. Second, it is very difficult to
extend our method to mode (1) with multiple spatial weight matrices. Furthermore, a generalized
likelihood ratio test was proposed to check the parametric form of the link function, in which a
resi dual-based bootstrap procedure was suggested to calculate the p-value of the proposed test. The
simulation studies show that the proposed estimation and test methods work well in finite samples.
The Boston housing price data were analyzed to illustrate the application of the partially linear
single-index spatial autoregressive mode and its estimation and test methods, which led to some
interesting empirical findings.

Two interesting future research topics about the partially linear single-index spatial
autoregressive model should be mentioned. First, one fundamental issue in the partially linear
single-index spatial autoregressive model is the structure identification or model sdlection, that is,
how to determine which explanatory variables have linear impact on the response variable and
which ones are of nonlinear impact on the response variable. In practice, data analysts usually
assume amodd structure according to their prior knowledge and then make estimation and inference
based on the assumed model structure. However, such prior knowledgeisrardy available, especially
when the number of explanatory variables is large. As a consequence, we will face the dangers of
model misspecification if we erroneously incorporate a explanatory variable which has nonlinear
impact on theresponsevariableinto thelinear part of theregression function and of loss of efficiency
if weerroneously incorporate a explanatory variablewhich haslinear impact ontheresponsevariable
into the nonlinear part of the regression function. Thus, determining which explanatory variables
have linear impact on the response variableis critical prior to the use of the partially linear single-
index spatial autoregressive model. Moreover, during theinitial stage of modeling, one oftenincludes
as many explanatory variables as possible to avoid misspecification due to the exclusion of the
important explanatory variables from the model. However, including excessive unimportant
explanatory variables in the modd may decrease the efficiency of estimation and test and hence the
precision of prediction. Hence, after correctly specifying the modd structure of the partially linear
single-index spatial autoregressive mode, one needs to further select the important explanatory
variables in both parametric and nonparametric component to increase the efficiency of estimation
and test and finally the precision of prediction.

Second, the current studies about the partially linear single-index spatial autoregressive modd
all assumed that the spatial weight matrix is exogenous. This exogenous assumption is reasonable

Journal of Econometricsand Statistics, 1(1) © 2021 39



Tizheng Li

if the spatial weight matrix is constructed based on contiguity or geographic distances among
spatial units. However, in some practical applications especially in the fidd of economics, it is
much better to construct the spatial weight matrix by using economic or socioeconomic distances.
Inthiscase, thespatial weight matrix islikely to be endogenous. Thus, it is appealing and necessary
to study the estimation and related test problems of the partially linear single-index spatial
autoregressive modd with an endogenous spatial weight matrix.
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