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Abstract: The partially linear single-index spatial autoregressive model is a
new class of semiparametric spatial autoregressive models, which achieves
both dimension reduction and nice model interpretation. In this paper, we
propose a new estimation method for the partially linear single-index spatial
autoregressive model by combining  local linear smoothing approach and
quasi-maximum likelihood method. Compared to existing estimation method,
the proposed method does not need to select instrumental variables.
Furthermore, we propose a generalized likelihood ratio test to check the
parametric form of the nonparametric component, in which a residual-based
bootstrap procedure is suggested to calculate p-value of the proposed test.
Some simulation studies are conducted to assess the performance of the
proposed estimation and test methods and simulation results show that both
methods perform well in finite samples. A real data example is provided to
illustrate the proposed estimation and test methods.

Keywords: Spatial dependence; Single-index modeling; Quasi-maximum
likelihood method; Local linear smoothing method; Bootstrap.

1. Introduction

In recent years, spatial dependence among cross-sectional units has become a standard notion of
economic research activities in relation to crime rates, social interaction, economic growth, spillover
effects, peer effects, price competition, tax competition, house prices, land prices, etc., and has
received an increasing attention by theoretical econometricians and applied researchers. Among
various models characterizing spatial dependence, the most popular one is perhaps spatial
autoregressive models, in which outcome of a spatial unit is allowed to depend on a weighted
average of outcomes of its neighboring units and the values of the explanatory variables. Linear
and nonparametric spatial autoregressive models are two important classes of spatial autoregressive
models and both have their unique advantages. The linear spatial autoregressive model is simple,
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easy to estimate and interpret, and can afford most efficient statistical inference if the linear
assumption is valid. The nonparametric spatial autoregressive model makes no assumption on the
form of the regression function and lets the data determine a functional form tailored to the data,
hence it carries no risk of model misspecification and can afford maximal flexibility and adaptability.
Partially linear spatial autoregressive model, a class of models between the linear and nonparametric
spatial autoregressive models, inherits advantages from both sides by allowing the response variable
to depend on its spatial lag and some of the explanatory variables in a linear way and nonlinearly
relate to the remaining explanatory variables. Since the introduction in Su and Jin (2010), the
partially linear spatial autoregressive model has gained considerable attention in recent years. For
example, Su and Jin (2010) developed a profile quasi-maximum likelihood method for partially
linear spatial autoregressive model, and studied the asymptotic properties of the resulting estimators.
However, the estimation method proposed by Su and Jin (2010) requires the error terms to be
homoscedastic, which is rather restrictive in some empirical applications. To take the
heteroscedasticity of the error term into account, Zhang (2013) and Zhang and Yang (2015a) proposed
the pairwise difference estimation method and the instrumental variable estimation method for the
partially linear spatial autoregressive model, respectively. Li and Mei (2013,2016) studied related
test problems in the partially linear spatial autoregressive model such as whether the nonparametric
component poses some interesting parametric forms and whether the parameters in the parametric
component are significant or more generally satisfy certain linear constraint conditions. Recently,
some researchers (Zhang and Sun, 2015; Zhang and Yang, 2015b; Ai and Zhang, 2017) extended
the partially linear spatial autoregressive model from cross-section data to panel data and studied
related estimation problems. More recently, Li and Guo (2020) considered the problem of variable
selection in the partially linear spatial autoregressive model. They proposed a class of penalized
likelihood method to simultaneously select significant explanatory variables in the parametric
component and estimate the corresponding nonzero parameters, and studied asymptotic properties
of the resulting penalized estimator.

However, as far as the model structure is concerned, the partially linear spatial autoregressive
model still has the following two drawbacks. First, when the number of the explanatory variables
in its nonparametric component is large, the partially linear spatial autoregressive model still suffers
from the same drawbacks as the nonparametric spatial autoregressive model such as the “curse of
dimensionality”, the difficulty of interpretation and the lack of extrapolation capability. Second,
the partially linear spatial autoregressive model requires the explanatory variables in its
nonparametric component are all continuous, which is rather stringent in practical applications.

To avoid the above mentioned two drawbacks of the partially linear spatial autoregressive
model, Sun and Wu (2018) and Cheng et al. (2019) independently proposed partially linear single-
index spatial autoregressive model, in which the response variable linearly depends on its spatially
lagged term and some of the explanatory variables but nonlinearly depends on a linear combination
of the remaining explanatory variables. Specifically, let (X

i
, Z

i
, Y

i
) be the observation collected

from the ith spatial unit (i = 1, ..., n), where X
i
 and Z

i
 are, respectively, the p × 1 and q × 1 vector of
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exogenous explanatory variables, and Y
i
 is the response variable of interest. Then the sample form

of the proposed partially linear single-index spatial autoregressive model is

( ) ,  1, ..., ,T T
i ij j i i i

j i

Y w Y X Z i n (1)

where w
ij
(i, j = 1, ..., n; i � j) are pre-specified exogenous spatial weights that determine the structure

of neighborhood among spatial units, � is the spatial autoregressive parameter that measures the
intensity of spatial correlation among the observations of the response variable, � is the vector of
regression coefficients, � is the vector of index parameters, �(�) is the unknown link function, and
�i(i = 1, ..., n) are the independent and identically distributed error terms with mean zero and finite
variance �2. To make model (1) identifiable, we assume that both X and Z do not contain constant
term and at least one component of Z is continuous, the link function �(�) is differentiable and not
constant on the support of ZT�, and the index parameter vector � satisfies ||�|| = 1 and its first
element is positive, where ||�|| denotes the Euclidean norm.

From the viewpoint of statistical modeling, the partially linear single-index spatial autoregressive
model is of the following three attractive advantages. First, by introducing index term ZT�, partially
linear single-index spatial autoregressive model not only avoids the “curse of dimensionality” since
only one-dimensional nonparametric smoothing is involved regardless of the dimension of Z, but
also has a nice interpretation with the impact of Z on Y being described by the finite-dimensional
parameter vector  and the univariate function �(�). Second, different from the partially linear spatial
autoregressive model, the partially linear single-index spatial autoregressive model allows the discrete
explanatory variables to appear in the nonparametric component. Third, through conducting a
hypothesis test or variable selection procedure on the index parameter vector �, one can identify
which explanatory variables in the nonparametric component have significant effect on the response
variable. However, it is quite difficult to determine which explanatory variables in the nonparametric
component are significant in the partially linear spatial autoregressive model.

To estimate parameter vector (�T, �T, �)T and link function �(�) in model (1), Sun and Wu
(2018) and Cheng et al. (2019) independently developed semiparametric generalized method of
moment (GMM) estimation method based on local linear smoothing method and generalized method
of moment, and studied asymptotic properties of the resulting estimators. The only difference between
Sun and Wu (2018) and Cheng et al. (2019) lies in the treatment of the error terms of model (1). In
Sun and Wu (2018), the error terms of model (1) are allowed to be heteroscedastic, while they are
assumed to be independent and identically distributed in Cheng et al. (2019). The semiparametric
GMM estimation method needs to select the instrumental variables and the choice of instrumental
variables may affect the finite sample performance of the method. More importantly, the optimal
choice of the instrumental variables is a very difficult problem. Furthermore, both Sun and Wu
(2018) and Cheng et al. (2019) did not consider the estimation of the error variance �2, which is a
vital parameter in model (1) because it measures the intensity of influence of random factors or
some missing explanatory variables on the response variable.
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In this paper, we develop a new estimation method for model (1) by combining local linear
smoothing method and quasi-maximum likelihood method. To be specific, we first treat the spatial
autoregressive parameter, index parameter vector and regression coefficient vector as if they were
known, and use the local linear smoothing method to estimate the link function �(�). Then the
quasi-maximum likelihood method is used to estimate the parameter vector � = (�T, �T, �, �2).
Given the estimate of �, the final estimate of �(�) can be obtained. Compared to the semiparametric
GMM estimation method of Sun and Wu (2018) and Cheng et al. (2019), the great advantage of our
method is that there is no need to select the instrumental variables. Thus, our estimation method
may have better finite sample performance than the semiparametric GMM estimation method of
Sun and Wu (2018) and Cheng et al. (2019), which is empirically verified by a simulation study in
Section 5. Furthermore, our method can estimate the error variance �2. However, our estimation
method also has the following two drawbacks. First, although our method does not require the error
terms to follow normal distribution, it require the error terms to be homoscedastic, which is rather
restrictive in some empirical applications. Second, it may be quite difficult to extend our method to
model (1) with multiple spatial weight matrices. In principle, we can formulate a profile quasi
log-likelihood function for model (1) with multiple spatial weight matrices. Nevertheless, during
the search of the profile quasi-maximum likelihood estimator, we need to focus on the parameter
space and evaluation of the determinant of the Jacobian transformation. For model (1), the parameter
space in many circumstances can be taken to be (–1, 1). But, the parameter space becomes rather
complicated for model (1) with multiple spatial weight matrices. Even if the error terms of model
(1) with multiple spatial weight matrices are normally distributed, the profile quasi-maximum
likelihood method would be hard to implement as the determinant of the Jacobian transformation
becomes more complicated than that of model (1). However, the semiparametric GMM estimation
method of Sun and Wu (2018) and Cheng et al. (2019) can be easily extended to model (1) with
multiple spatial weight matrices.

After fitting the partially linear single-index spatial autoregressive model (1), one of the
important inferential problems is to check whether some interesting parametric forms are appropriate
to the nonparametric component (namely, if a parametric spatial autoregressive model is adequate).
This problem is vital important since a parametric spatial autoregressive model, which is powerful
in explanation and easy to be fitted, is more preferred unless a partially linear single-index spatial
autoregressive model is necessary for a given spatial data-set. To address this issue, we construct a
test statistic based on the difference of the maximal profile quasi log-likelihood under the alternative
model and the maximal quasi log-likelihood under the null model. Some simulation studies are
conducted to assess the performance of the proposed estimation and test methods and the simulation
results show that both methods perform well in finite samples. The Boston housing price data are
analyzed to illustrate the application of the proposed estimation and test methods.

The rest of this paper is organized as follows. In Section 2, we introduce the proposed estimation
method in detail. In Section 3, we discuss some issues related to the practical implementation of the
proposed estimation method. A generalized likelihood ratio test statistic is constructed in Section 4
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to check the parametric form of the link function �(�), in which a residual-based bootstrap procedure
is provided to approximate the null distribution of the resulting test statistic. Some simulation
studies are conducted to evaluate the finite sample performance of the proposed estimation and test
methods in Section 5. In Section 6, a real data example is given to demonstrate the application of
the proposed estimation and test methods. The paper is then concluded with some remarks in
Section 7.

2. Estimation Method

Let w
ii
 = 0(i = 1, ..., n), w = (w

ij
), Y = (Y1, ..., Yn

)T, X = (X1, ..., Xn
)T, Z = (Z1, ..., Zn

)T, �(Z�) =
(�(Z

1
T�),...�(Z

n
T�))T, and � = (�1, ..., �n

)T. Then model (1) can be expressed in matrix form as

Y = �WY + X� + �(Z�) + �. (2)
Let T(�) = I – �W and �(�) = Y – �WY – X� – �(Z�), where I be an identity matrix of order  n

and � = (�T, �T, �)T. Then, the Gaussian quasi log-likelihood function of model (2) is

2
2

1
log ( , ( )) log(2 ) log( ( ) ) ( ) ( ).

2 2
Tn

L T� � � � � �� � � � � � � �
�

(3)

Since the unknown function �(�) is present in Equation (3), we propose estimating the finite-
dimensional parameter vector � by the following two-stage procedure:

(i) Estimate �(�) for fixed � and denote the resulting estimator as ��(�);
(ii) Plug in ��(�) into �(�) in (3) and obtain the estimator �̂  of  by using the quasi-maximum

likelihood method, and finally obtain the estimator ˆ ( )
�

� �  of �(�).
To estimate �(�) for fixed � in the first stage, we employ the local linear smoothing method

although other nonparametric smoothing methods such as the Nadaraya-Watson kernel method and
the spline methods are applicable. The main reason for preferring the local linear smoothing  method
is because it possesses many attractive properties such as high statistical efficiency in an asymptotic
minimax sense, design adaptation, and automatic boundary corrections (for details see Fan and
Gijbels, 1996).

Assume that the link function �(�) has continuous second order derivative. Then for any given
u in the domain of the index term U = ZT�, it follows from the Taylor’s expansion that

�(v) ���(u) + �(u)(v – u)
for any v in a neighborhood of u. The local linear smoothing method finds �(u) and ��(u) by
minimizing the following locally weighted least squares function

� � � �� � � �
2

T

1 1

,
n n

i ij j i i h i
i j

Y w Y X u u U u K U u
� �

� �
�� � � � �� �� � �� �

� �
� � (4)

where U
i
 = Z

i
T�, and K

h
(�) = K(�/h)/h with K(��, being a kernel function defined on � and h being a

bandwidth.
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Let �(u) = (�(u), ��(u))T, W(u, �) = diag(K
h
(U1 – u), ..., K

h
(U

n
 – u))T, and Z(u, �) =

1

1 1
.

T

nU u U u

� �
� �� �� �

�

�

Given �, the solution of the weighted least squares problem (4), that is, the local linear estimator
of �(u), can be expressed as

��(u) = S(u, �) [T(�)Y – X�],
where S(u, �) = [Z(u, �)T W(u, �)Z(u, �)]–1 Z(u, �)T W(u, �).

In particular, the local linear estimator of the link function �(u) is given by

��(u) = s(u, �)[T(�)Y – X�], (5)
where s(u, �) = eTS(u, �) with e = (1, 0)T.

With �(�) in (3) being replaced by ��(u), we obtain the following profile quasi log-likelihood
function

2
2

1
log ( ) log(2 ) log( ( )

2 2

n
L T� � � �� � � � �

�

 [T(�)Y – X� – ��(Z�)]T [T(�)Y – X� – ��(Z�)], (6)
where ��(Z�) = (��(Z1

T�), ..., ��(Zn
T�))T.

Maximizing log L(�) under the constraint conditions �T� = 1, �2 > 0 and –1 < ��< 1 yields the

profile quasi-maximum likelihood estimator of � as �̂. Then the final local linear estimator ˆ ( )u�  of

�(u) is taken as ��(u) with � being replaced by �̂. As a result, the residual vector is

ˆ1
ˆˆ ˆ ˆ ˆ ˆ( , , ) ( ).T

n= Y WY X Z
�

� � � � �� � � �� �� (7)

3. Implementation of Estimation Method

3.1. An Iterative Algorithm

Since it is difficult to directly maximize the profile quasi log-likelihood function log L(�), we

propose an iterative algorithm to obtain the profile quasi-maximum likelihood estimator �̂ of �.
Step 1. Initialize �(0) = (�(0), �(0), �(0), �2(0)).
Step 2. Update �2(m+1) = arg max�2�(0, + �) log L(�(m), �(m), �(m), �2).
Step 3. Update �(m+1) = arg max��(–1, 1) log L(�(m), �(m), �, �2(m+1)).
Step 4. Update (�(m+1), �(m+1)) = arg max(�, �)��p+q log L(�, �, �(m+1), �2(m+1)).
Step 5. Update Steps 2-4 until convergence and denote the final estimator of (�, �, �, �2) as

2ˆˆ ˆ ˆ( ,  ,  ,  )� � � � , then 2ˆ ˆˆ ˆ ˆ( ,  ,  ,  )T T T=� � � � � .
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Remark 1. In Step 1, two methods can be used to obtain the initial estimator �(0) of �. For
example, the initial estimator �(0) can be obtained by fixing � = 0 and fitting a partially linear
single-index model Y = X� + �(Z�) + �. Alternatively, the initial estimator �(0) can also be obtained
by fitting a linear spatial autoregressive model Y = �WY + X� + Z� + � by the quasi-maximum
likelihood method. In Steps 2 and 3, both are one-dimensional nonlinear optimization problems
which can be solved by using, for example, the function fminbnd in the toolbox optimization of
the computer software Matlab. In Step 4, updating (�(m+1), �(m+1)) is equivalent to fitting the following
partially linear single-index model

Y* = X� + �(Z�) + �, (8)
where Y* = Y – �(m+1)WY. There are several estimation methods available in the literature to fit model
(8) such as the back-fitting method of Carroll et al. (1997), the penalized spline estimation method
of Yu and Ruppert (2002) the minimum average variance estimation method of Xia and Härdle
(2006), and the profile least squares method of Liang et al. (2010). Here we employ the profile
least squares method to estimate (�, �) in model (8). The reason for such a choice is that the
estimator of (�, �) obtained by the profile least squares method is semiparametrically efficient (for
details, see Liang et al., 2010).

3.2. Bandwidth Selection

With estimated �̂, we obtain an approximated nonparametric regression model

� �T

1

ˆ ˆˆ ,   1, , ,
n

i ij j i i i
j

Y w Y X U i n
�

�� � � � � � � �� � (9)

where ˆ ˆ
T

i iU Z� � . Hence, the value of the bandwidth h can be determined by some data-driven
criteria such as the rule of thumb (ROT), the cross validation (CV), the generalized cross validation
(GCV) and the corrected Akaika information criterion (AIC

c
). To reduce the heavy computational

burden, we employ the computationally simple rule of thumb (ROT) method to determine the value

of h, that is, h = s
U
n–1/5, where s

U
 is the sample standard deviation of 

1
ˆ ˆ, , nU U� .

4. Testing for Parametric form of Link Function

4.1. The Hypotheses

The nonparametric estimate of the link function �(�) can provide us with descriptive and graphical
information for exploratory data analysis. Using this information, it is possible to formulate a
parametric spatial autoregressive model that takes into account the features that emerged from the
preliminary analysis. To this end, we introduce a goodness-of-fit test to assess appropriateness of a
parametric spatial autoregressive model. Without loss of generality, we consider a simple linear
spatial autoregressive model under the null hypothesis. Accordingly, the null and alternative
hypotheses can be described as follows:
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H0 : �(u) = �0 + �1u for all u ��H1 : �(u) ���0 + �1u for some u, (10)
where �0 and �1 are two unknown constant parameters.

4.2. Construction of Test Statistic

Firstly, under the alternative hypothesis H1, we fit the partially linear single-index spatial
autoregressive model (1) by the estimation method proposed in Section 2 and obtain the maximal
profile quasi log-likelihood as

� � � � � � � �� �1
1 1 ˆlog 2 1 log RSS log ,

2 2

n n
l H n T�� � � � � � � � �� � (11)

where 1 ˆ ˆRSS T� � � .

Secondly, under the null hypothesis H0, model (1) becomes

� �0 1 ,   1, , .T T
i ij j i i i

j i

Y w Y X Z i n
�

� � � � � � � � � � � �� � (12)

Let 0 1( ,  ,  )T T T� � � � � � and � �,  1,  X X Z�  with 1 is an n × 1 vector with all of its elements

being 1. Then, model (12) can be further written as

.Y WY X� � � � � � (13)

Model (13) is a standard linear spatial autoregressive model, and the quasi-maximum likelihood
method can be used to fit this model. The Gaussian quasi log-likelihood function of model (13) is

� � � � � �� �2
2

1
log log 2 log

2 2

n
L T� � � �� � � � �

�
� � � � ,

T
T Y X T Y X� � � �� � � � � �� � � � (14)

where � �2,  ,  
TT=� � � � .

   Given �, log ( )L �  can be partially maximized, which yields quasi-maximum likelihood

estimators of  and �2, respectively, as

� � 1( ) ( )T TX X X T Y�� � � �� (15)

and

� � � � � �2
0 ,

TTY T M T Y� � � � �� (16)

where � � 1

0
T TM I X X X X

�
� � . Substituting ( )� ��  and 2 ( )� ��  into (14) leads to the concentrated

quasi log-likelihood function of � as

� � � � � �� � � �� �2log log 2 1 log log .
2 2

n n
L T� � � � � � � � � � � �� �� � (17)
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Maximizing log ( )L ��  subject to the constraint condition –1 < � < 1 gives the quasi-maximum

likelihood estimator ��  of �. Substituting ��   into ( )� ��  and 2 ( )� �  yields the final estimator � �� � � �� � �

of � , the estimator 2 2 ( )� � � ��� �  of �2 and, consequently, the estimator 2( ,  ,  )T T=� � � �� � � �  of �.
Therefore, the maximal quasi log-likelihood under H0 can be expressed as

� � � � � � � �� �1
0 0log 2 1 log RSS log ,

2 2

n n
l H n T�� � � � � � � � �� � � (18)

where � � � �
T

0RSS T Y X T Y X� � � �� � � � � � �
� � � �

� �� �  is the residual sum of squares under H0 and 2��

= n–1RSS0.
Based on l(H1) and l(H0), a generalized likelihood ratio statistic is constructed as

� � � �
� �
� �

0
1 0

1

ˆRSS
log log .

2 RSS

Tn
T l H l H

T

� ��� �
� � � � � �� � � ��� � � ��

(19)

Intuitively, the null hypothesis H0 should be rejected if the value of T is large enough. Therefore,
the p-value of the test is

00 ( ),Hp P T t� � (20)

where P
H0

(�) refers to the probability computed under the null hypothesis H0 and t is the observation
of T. For a given significance level �, if p0 < �, reject H0; otherwise not reject H0.

Remark 2. Although the test statistic T is derived for linear form of null hypothesis, our test
method can be done for other more general forms of null hypothesis like �(u) = f (u, �), where
f (u, �) is a function whose form is completely known but with an unknown parameter vector �. In
this case, under the null hypothesis, model (1) becomes a nonlinear spatial autoregressive model

� �, ,   1, , .T T
i ij j i i i

j i

Y w Y X f Z i n
�

� � � � � � � � � �� �

It is very difficult to fit this model by the quasi-maximum likelihood method because of its
complexity. To overcome this difficulty, under the null hypothesis H0, we use the same parametric

estimators ˆˆ ,  � � , and �̂  as those obtained under the alternative hypothesis H1, and obtain an estimator
of � by solving the following  nonlinear least squares function

� � � �
2

1 1

ˆˆ ˆ ,
T

n n
T

i ij j i i
i j

S Y w Y X f Z
� �

� �
� � � � � � � � �� �

� �
� �

Then, the resulting residual sum of squares under the null and alternative hypotheses are

� �
2

0
1 1

ˆˆ ˆ ˆRSS = ,
T

n n
T

i ij j i i
i j

Y w Y X f Z
� �

� �
� � � � � � �� �

� �
� �
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and

� �
2

ˆ1
1 1

ˆˆ ˆRSS =
T

n n
T

i ij j i i
i j

Y w Y X Z
� �

� �
� � � � � � �� �

� �
� � θ

Thus, for null hypothesis like �(u) = f (u, �), the test statistic T becomes

0 1

1

RSS RSS
.

2 RSS

n
T

�
�

4.3. Calculation of the p-value

To calculate the p-value of the proposed test, one of the commonly used methods is to derive the
asymptotic null distribution of the test statistic T. However, the presence of the spatially lagged
term of the response variable in the model makes the derivation of the asymptotic null distribution
of the test statistic T very difficult. On the other hand, even if one can derive the asymptotic null
distribution of T, as pointed out by many researchers (Hall and Hart, 1990; Härdle and Mammen,
1993; Fan and Jiang, 2007), p-value computed by the asymptotic null distribution of the test statistic
may be invalid under the situation of finite sample sizes. Therefore, we propose a bootstrap procedure
to approximate the null distribution of the test statistic T.

Among the existing bootstrap sampling schemes, the residual-based bootstrap procedure has
been extensively used to approximate the null distribution of related test statistics in the literature
of the nonparametric and semi-parametric regression (Stute et al., 1998; Cai et al., 2000; Fan and
Huang, 2005; Fan and Jiang, 2005). Moreover, as pointed out by Anselin (1988), it is crucial that
spatial structure must be preserved during data resampling in models with spatial dependence, and
particularly with a spatially lagged term of the response variable. Thus, we employ the residual-
based bootstrap procedure to approximate the null distribution of the test statistic T. In our case, the
procedure can be described as follows.

Step 1. Based on the data set {Y, X, Z} and a predetermined value of the bandwidth h, compute

under H1 the residual vector �̂  shown in (7) and centralize it to obtain � �1ˆ ˆ ˆ ˆ ˆ= , ,
T

c n� � � � � � ��  in

which 
1

1
ˆ ˆ

n

i
in �

� � �� . Furthermore, compute under H0 the estimators ��  and �̂. With the estimation

results under H0 and H1, compute the observed value t of the test statistic T by (19).
Step 2. Draw a bootstrap sample �* = (�1

*, ..., �
n
*)T with replacement from the empirical distribution

function of ˆc� .

Step 3. Generate 1( ) ( )*Y I W X� �� � � � � ���  and calculate the bootstrap version T* of the test
statistic T by
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� �
� �

0

1

ˆRSS
log log ,

2 RSS

Tn
T

T

��
�

� �

� ��� � � �� �� � � ��� � � �� (21)

where RSS0
* and RSS1

* are, respectively, the residual sum of squares obtained under H0 and H1 based
on the data set {Y*, X, Z}, and ���  and ˆ ��  are the estimators of � based on the data set {Y*, X, Z}
under H0 and H1, respectively.

Step 4. Repeat steps 2 and 3 m times and obtain a bootstrap sample of the test statistic T as
T1

*, ... T
m
*. The p-value is then estimated by

� �
0

# |
ˆ ,

i iT T t
p

m

� � �
� (22)

where #A denotes the number of the elements in a set A.

5. Simulation Studies

In this section, we investigate the finite sample performance of the proposed estimation and test
methods through simulation studies. In both simulation studies and real data analysis in Section 6,

we employ the Gaussian kernel function � � � �21
exp 2

2
K u u� �

�
 and the bandwidth selection

procedure proposed in Section 3.2.

5.1. Spatial Layout and Design of Experiment

The spatial layout for simulation studies is taken as a square region with the length of each side
being l units. This type of spatial layout is of wide application backgrounds in the field of remote
sensing. The l × l lattice squares in the region, which leads to a sample size of n = l2, are designed
as the spatial units at which the observations of the response variable and the explanatory variables
are made. These n spatial units are labeled by 1 to n with the order from left to right and from
bottom to top.

Given the above spatial layout, the spatial weight matrix W is constructed based on the Rook
contiguity and the exponential function of the distance between spatial units, respectively. For the
Rook contiguity, the standardized spatial weight matrix W is generated as follows:

(i) Let w
ij
 = 1 if spatial unit j shares a common edge with spatial unit i and let w

ij
 = 0 otherwise;

(ii) divide each element w
ij
 by the corresponding row sum to form the standardized spatial

weight matrix W. For the latter way, the element w
ij
 of the spatial weight matrix W is taken

as 
1

exp( ) exp( )
n

ij ij ik
k

w d d
�

� � �� , where d
ij
 is the Euclidean distance between spatial units

i and j.
We generate 500 data sets, each consisting of n = 49 and n = 100 random observations, from

the following partially linear single-index spatial autoregressive model
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� � ,   1, , ,T T
i ij j i i i

j i

Y w Y X Z i n
�

� � � � � � � � � �� � (23)

where X
i
 = (X

i1, Xi2, Xi3)
T (i = 1, ..., n) were randomly drawn from the normal distribution with zero

mean vector and the covariance matrix 
1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

� �
� �
� �
� �� �
� �

, Z
i
 = (Z

i1, Zi2, Zi3)
T in which Z

ij
( j = 1, 2, 3) are

independent and uniformly distributed on interval (0, 1), � = (0.5774, 0,5774, 0.5774)T, � = (0.5,
1.0, 1.5)T, and �(u) = sin(2�u). The value of the spatial autoregressive parameter � was taken to be
0.2, 0.5 and 0.8, respectively, to see the impact of the intensity of the spatial dependence among the
observations of the response variable on the performance of the proposed estimation and test methods.

In order to investigate the influence of the error distribution on the performance of the proposed
estimation and test methods, we consider the following three types of error distribution whose
scales are adjusted such that they all have mean zero and variance 0.25:

(I) Normal distribution N(0, 0.25);

(II)  Uniform distribution ( 3 2, 3 2)U � ;

(III) Transformed and centralized chi-square distribution � �21
8 1

8
� � , where �2(8) denotes the

random variable of a chi-square distribution with 8 degrees of freedom.

5.2. Performance of the Proposed Estimation Method

Simulation results for the proposed estimator ˆ  of � under the given three types of error distribution
are, respectively, summarized in Tables 1-3, in which “Mean” and “SD” stand for the mean and the
standard deviation of the 500 estimates of �, respectively.

We summarize some empirical findings from Tables 1-3. First, we can see that the bias and SD

for the estimator �̂  of � are fairly small for almost all cases and they decrease dramatically when
the sample size n increases, which demonstrates that the proposed estimation method gives very
accurate estimate of �. Second, as the degree of complexity of the spatial weight matrix W increases,

that is the proportion of nonzero elements in W, both the bias and SD for the estimator �̂ of �
increase significantly, whereas the bias and SD of other estimators �, � and �2 are little affected,
similar phenomenon is also observed in linear spatial autoregressive models (Lee, 2004), partially
linear spatial autoregressive models (Su and Jin, 2010) and varying coefficient spatial autoregressive
models (Li and Chen, 2013). This is reasonable because the higher the proportion of nonzero
elements in W is, the stronger the spatial dependence of the response variable will be, which makes
it more difficult to estimate the spatial autoregressive parameter �. Third, it can be observed from
Tables 1-3 that the simulation results for �̂  under the three types of error distribution have no
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evident difference, which shows that the performance of the proposed estimator �̂  of � is quite
robust to the variation of the error distribution.

The finite sample performance of the estimator �( )� �  of �(�) is evaluated by using the mean
square error (MSE) which is defined as

� �� � � � � �
0

2

10

1
� �MSE ,

n

k k
k

u u
n �

� �� � � � � �� ��
where u

k
 (k = 1, ..., n0) are some grid points that lie between the minimum value and maximum

value of ��=  ,   1, ,T

i i
U Z i n . In our simulation, we took n0 = 100. Simulation results for the

proposed estimator  under the given three types of error distribution are reported in Table 4.

Table 1: Simulation results for   under the error distribution N(0, 0.25).

W n � Index �
1

�
2

�
3

�
1

�
2

�
3

� �2

Rook 49 0.2 Mean 0.5743 0.576 0.5737 0.4998 0.9897 1.5031 0.1960 0.2138
SD 0.0546 0.058 0.0542 0.1052 0.1050 0.1060 0.0569 0.0439

0.5 Mean 0.5739 0.5674 0.5681 0.4928 1.0007 1.5068 0.4905 0.2154

SD 0.0674 0.1207 0.0833 0.1125 0.1085 0.1086 0.0519 0.0471
0.8 Mean 0.5673 0.5599 0.5543 0.4984 1.0090 1.4959 0.7903 0.2187

SD 0.0761 0.1372 0.1816 0.1036 0.1192 0.1079 0.0360 0.0591

100 0.2 Mean 0.5728 0.5795 0.5769 0.5014 1.0017 1.4987 0.2014 0.2337
SD 0.0336 0.0327 0.0340 0.0676 0.0642 0.0708 0.0364 0.0330

0.5 Mean 0.5761 0.5739 0.5789 0.4983 1.0012 1.4988 0.4959 0.2320

SD 0.0356 0.0340 0.0355 0.0699 0.0694 0.0659 0.0330 0.0320
0.8 Mean 0.5781 0.5722 0.5717 0.4950 1.0048 1.4975 0.7972 0.2364

SD 0.0416 0.0619 0 .0776 0.0677 0.0655 0.0670 0.0199 0.0399

EXP 49 0.2 Mean 0.5691 0.5754 0.5793 0.4893 1.0065 1.4935 0.1485 0.2141
SD 0.0575 0.0562 0.0553 0.1050 0.1044 0.0996 0.1557 0.0455

0.5 Mean 0.5711 0.5756 0.5774 0.4997 0.9987 1.5008 0.4594 0.2128

SD 0.0553 0.0549 0.0550 0.1107 0.1023 0.1025 0.1369 0.0452
0.8 Mean 0.5749 0.5733 0.5665 0.5002 0.9963 1.4916 0.7346 0.2166

SD 0.0650 0.0719 0.1026 0.1053 0.1007 0.1014 0.1117 0.0507

100 0.2 Mean 0.5776 0.5751 0.5763 0.4974 1.0083 1.4982 0.1822 0.2345
SD 0.0339 0.0349 0.0334 0.0656 0.0694 0.0687 0.0869 0.0346

0.5 Mean 0.5737 0.5752 0.5797 0.5013 0.9973 1.4980 0.4832 0.2330

SD 0.0355 0.0367 0.0364 0.0651 0.0640 0.0632 0.0742 0.0333
0.8 Mean 0.5760 0.5775 0.5752 0.5050 1.0037 1.4954 0.7802 0.2343

SD 0.0349 0.0355 0.0378 0.0660 0.0683 0.0667 0.0535 0.0324
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Table 2: Simulation results for  under the error distribution -( 3/2, 3/2)U .

W n � Index �
1

�
2

�
3

�
1

�
2

�
3

� �2

Rook 49 0.2 Mean 0.5697 0.5775 0.5768 0.5019 0.9979 1.4987 0.1970 0.2125

SD 0.0588 0.0548 0.0524 0.1025 0.1081 0.1005 0.0613 0.0349

0.5 Mean 0.5770 0.5722 0.5740 0.4902 1.0016 1.5055 0.4938 0.2130

SD 0.0567 0.0610 0.0575 0.1078 0.1073 0.1075 0.0494 0.0333

0.8 Mean 0.5713 0.5574 0.5522 0.5042 1.0037 1.4935 0.7926 0.2213

SD 0.0652 0.1500 0.1772 0.1085 0.1052 0.1090 0.0338 0.0516

100 0.2 Mean 0.5774 0.5781  0.5734 0.4981 0.9989 1.5013 0.1990 0.2323

SD 0.0340 0.0359 0.0347 0.0658 0.0688 0.0703 0.0387 0.0230
0.5 Mean 0.5767 0.5752 0.5768 0.5074 0.9931 1.5046 0.4944 0.2329

SD 0.0356 0.0361 0.0347 0.0687 0.0670 0.0692 0.0315 0.0232

0.8 Mean 0.5776 0.5688 0.5712 0.4981 0.9999 1.5030 0.7973 0.2369

SD 0.0419 0.0936 0.0784 0.0705 0.0709 0.0737 0.0202 0.0311

EXP 49 0.2 Mean 0.5730 0.5776 0.5737 0.5020 0.9909 1.5007 0.1541 0.2141
SD 0.0546 0.0534 0.0556 0.1012 0.1016 0.1041 0.1599 0.0321

0.5 Mean 0.5747 0.5761 0.5728 0.5025 0.9953 1.4962 0.4616 0.2136

SD 0.0587 0.0558 0.0570 0.1072 0.1073 0.1083 0.1257 0.0357

0.8 Mean 0.5726 0.5751 0.5718 0.4968 1.0053 1.4978 0.7505 0.2143

SD 0.0614  0.0852 0.0580 0.1092 0.1095 0.1132 0.1009 0.0358

100 0.2 Mean 0.5789 0.5769 0.5730 0.5003 0.9974 1.4996 0.1865 0.2329

SD 0.0366 0.0330 0.0368 0.0674 0.0693 0.0675 0.0909 0.0231

0.5 Mean 0.5792 0.5755 0.5744 0.4962 1.0009 1.5015 0.4858 0.2348

SD 0.0343 0.0327 0.0342 0.0704 0.0665 0.0646 0.0769 0.0240

0.8 Mean 0.5771 0.5774 0.5742 0.4954 1.0011 1.4995 0.7797 0.2331

SD 0.0341 0.0358 0.0369 0.0686 0.0747 0.0720 0.0519 0.0230

We can see from Table 4 that the MSE of the estimator �( )� �  seems quite robust with respect to
the variation of the error distribution, the spatial weight matrix and the spatial autoregressive
parameter, and decreases remarkably as the sample size n increases.

5.3. Performance of the Proposed Test Method

In this subsection, we evaluate the finite sample performance of the proposed test method, including
the validity of the bootstrap approximation to the null distribution of the test statistic and the power
of the test. To this end, we took the link function �(u) in (23) to be �(u) = u + c sin(2�u), where c
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Table 3: Simulation results for  under the error distribution 21
(8) 1

8
.

W n � Index �
1

�
2

�
3

�
1

�
2

�
3

� �2

Rook 49 0.2 Mean 0.5739 0.5762 0.5732 0.5049 0.9974 1.4932 0.1889 0.2125

SD 0.0597 0.0547 0.0585 0.1048 0.1031 0.1038 0.0568 0.0536
0.5 Mean 0.5767 0.5654 0.5731 0.5019 0.9966 1.5009 0.4932 0.2116

SD 0.0551 0.0977 0.0820 0.1037 0.1068 0.1039 0.0507 0.0546

0.8 Mean 0.5723 0.5516 0.5439 0.5012 1.0040 1.4996 0.7914 0.2221
SD 0.0772 0.1761 0.1885 0.1088 0.1063 0.1097 0.0348 0.0696

100 0.2 Mean 0.5755 0.5768 0.5766 0.5035 1.0000 1.4969 0.1971 0.2355
SD 0.0343 0.0354 0.0350 0.0769 0.0654 0.0638 0.0376 0.0429

0.5 Mean 0.5744 0.5783 0.5761 0.5039 1.0008 1.4968 0.4970 0.2339

SD 0.0351 0.0369 0.0344 0.0680 0.0676 0.0689 0.0294 0.0416

0.8 Mean 0.5776 0.5777 0.5736 0.4975 1.0048 1.4992 0.7979 0.2341

SD 0.0333 0.0352 0.0364 0.0694 0.0647 0.0674 0.0199 0.0415

EXP 49 0.2 Mean 0.5752 0.5720 0.5765 0.5005 1.0000 1.4935 0.1665 0.2103

SD 0.0562 0.0560 0.0572 0.1048 0.1082 0.1110 0.1503 0.0548

0.5 Mean 0.5685 0.5719 0.5819 0.4995 0.9971 1.4936 0.4555 0.2156

SD 0.0607 0.0605 0.0619 0.1038 0.1100 0.1077 0.1386 0.0608

0.8 Mean 0.5719 0.5747 0.5770 0.4985 1.0024 1.5027 0.7464 0.2155

SD 0.0570 0.0565 0.0572 0.1068 0.1059 0.1028 0.0988 0.0587

100 0.2 Mean 0.5782 0.5747 0.5757 0.5026 1.0004 1.4996 0.1835 0.2300

SD 0.0346 0.0374 0.0361 0.0681 0.0648 0.0703 0.0932 0.0404

0.5 Mean 0.5784 0.5782 0.5720 0.4992 1.0013 1.4977 0.4801 0.2317

SD 0.0349 0.0355 0.0375 0.0704 0.0658 0.0708 0.0750 0.0430

0.8 Mean 0.5781 0.5740 0.5768 0.5044 0.9980 1.4983 0.7795 0.2318

SD 0.0350 0.0366 0.0341 0.0652 0.0693 0.0620 0.0548 0.0419

is such a constant that will take different values for different purposes. Note that the null hypothesis
H0 is true when c = 0 while the alternative hypothesis H1 holds with c ��0.

In the simulation study performed here, we took the value of c in the link function �(u)  to be
0, 0.15, 0.30 and 0.45, respectively, to examine the validity of the bootstrap approximation to the
null distribution of the test statistic T and the power of the test. The remainder of the experimental
design was kept to be the same as that in Subsections 5.1 and 5.2 except that the spatial weight
matrix was taken as the Rook and the spatial autoregressive parameter was taken to be 0.5. The
reason why we only considered the case of Rook spatial weight matrix and � = 0.5 is that the
involved computation is heavily huge and the simulation results under other cases are rather similar.
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For each given value of c and each type of the error distribution, we run 200 replications of the
test method and recorded the frequency of rejecting the null hypothesis under a given significance
level �� (0.01,0.05 and 0.10) as the empirical size of the test under H0 (that is, c = 0) and the
empirical power of the test under H1 (that is, c � 0). And for each replication, the p-value in (22)
was computed based on m = 500 bootstrap samples. The simulation results for the given three types
of the error distribution are reported in Table 5.

We conclude some empirical findings from Table 5. First, in all of the experimental settings,
the empirical sizes are all reasonably close to the corresponding significance levels � even for the
very small sample size of n = 49. This demonstrates that the proposed bootstrap procedure yields
an accurate approximation to the null distribution of the test statistic T at least on the right tail of
the null distribution on which the p-value of the test is computed. Second, we can observe from the
results that the empirical sizes have not evident difference for the three error distributions considered
here, which shows that the bootstrap approximation to the null distribution of the test statistic T is
quite robust to the variation of the error distribution. Third, the empirical power increases rapidly
as the alternative hypothesis deviates away from the null hypothesis or the sample size n increases,
which indicates that the proposed test method is powerful in identifying the linear form of the link
function. Fourth, the empirical power is also quite robust with respect to the variation of the error
distribution.

5.4. An Additional Simulation Study

According to comment 1 of the reviewer, we add a simulation study to compare the finite sample
performance of the proposed estimation method with that of the semiparametric GMM estimation

Table 4: MSE index for ( ) in model (23).

W n  � N(0, 0.25) ( 3 / 2, 3 / 2)U �
21
(8) 1

8
� �

Rook 49 0.2 0.0645 0.0668 0.0697

0.5 0.0740 0.0703 0.0685

0.8 0.0898 0.0847 0.0891

100 0.2 0.0418 0.0423 0.0427

0.5 0.0427 0.0410 0.0427

0.8 0.0441 0.0452 0.0413

Exp 49 0.2 0.0708 0.0737 0.0748
0.5 0.0814 0.0757 0.0790

0.8 0.1553 0.1174 0.1199

100 0.2 0.0447 0.0432 0.0413

0.5 0.0420 0.0466 0.0458

0.8 0.0514 0.0466 0.0477
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method which independently developed by Sun and Wu (2018) and Cheng et al. (2019). Following
Sun and Wu (2018), we consider the following data generating process:

� �
�

� �� �� � � �� �� �� � � � �
� ��� �
� �

� �
1 2 3

3
0.5 0.3 sin 0.3 ,    1, , ,

i i i

i ij j i i
j i

Z Z Z a
Y w Y X e i n

b a (24)

where 3 2 1.645 12� �a ,  3 2 1.645 12b � � , Xi(i = 1, ..., n) are drawn independently

from binomial distribution B(1, 0.5), Z
ij
( j = 1, 2, 3) are independently generated from uniform

distribution U(0, 1), e
i
(i = 1, ..., n) are drawn independently from standard normal distribution

N(0, 1). The spatial weights w
ij
(i, j = 1, ..., n) are specified based on the spatial scenario in Case

(1991). To be specific, suppose there are R districts and each district has m members. Hence, the
sample size is n = Rm. Moreover, each neighbour of a member in a district is given equal weight. In
this case, the spatial weight matrix is W = I

R
 � B

m
, where � is the Kronecher product and B

m
 =

(1/(m – 1))(1
m
1

m
T – I

m
) with 1

m
 being a m × 1 vector whose elements are all 1. Like that in Sun and

Wu (2018), we consider three values of (R, m) : (10, 10), (20, 10) and (20, 20), which corresponds
to the sample size 100, 200 and 400, respectively. Following Sun and Wu (2018), for each case, by
repeating both estimation procedures 400 times, we get the means, biases, standard deviations
(SDs) and mean squared errors (MSEs) for all parameter estimators. To evaluate the accuracy of
the estimate of the link function, we consider mean integrated squared error (MISE) of �( )� �  which
is defined as:

Table 5: The rejection frequencies of testing for the linearity of link function ( ) in model (23).

49 100

Error distribution c 0.01 0.05 0.10 0.01 0.05 0.10

N(0, 0.25)  0 0 0.045 0.080 0.010 0.065 0.120
0.15 0.070 0.200 0.335 0.165 0.330 0.445
0.30 0.240 0.515 0.670 0.720 0.880 0.935
0.45 0.675 0.900 0.945 0.975 0.995 1.000

( 3 / 2, 3 / 2)U � 0 0.025 0.055 0.095 0.010 0.045 0.115

0.15 0.050 0.185 0.240 0.105 0.275 0.400
0.30 0.240 0.495 0.625 0.750 0.900 0.935
0.45 0.630 0.880 0.915 0.985 0.995 0.995

21
8 1

8
0 0.015 0.065 0.140 0.012 0.035 0.125

0.15 0.080 0.205 0.295 0.090 0.290 0.440
0.30 0.375 0.555 0.660 0.710 0.875 0.925
0.45 0.710 0.885 0.920 0.975 1.000 1.000
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� � � �� �2
ˆMISE .E u u du� �� �� �� ��

We can see from Table 6 that, for the index parameters �1, �2 and �3, the spatial autoregressive
parameter �, and the link function �(�), the proposed estimation method gives more accurate estimate
than the semiparametric GMM estimation method which independently developed by Sun and Wu
(2018) and Cheng et al. (2019). One possible reason is that the instrumental variables use in Sun
and Wu (2018) and Cheng et al. (2019) may be not optimal, which affect the finite sample
performance of their method. However, for the regression coefficient �, the semiparametric GMM
estimation method gives more accurate estimate than our method. Although this simulation study
shows that our method slightly outperforms the semiparametric GMM estimation method of Sun
and Wu (2018) and Cheng et al. (2019), overall comparison between two methods needs further
investigation.

Table 6: Simulation results for profile quasi–maximum likelihood estimate (PQMLE) and
semiparametric generalized method of moments estimate (SGMME)

PQMLE SGMME

(R, m) Parameter Mean Bias SD MSE Mean Bias SD MSE

(10, 10) �
1

0.5743 –0.0030 0.0486 0.0024 0.5680 –0.0094 0.1344 0.0181

�
2

0.5740 –0.0034 0.0491 0.0024 0.5533 –0.0241 0.1564 0.0250

�
3

 0.5776 0.0003 0.0482 0.0023 0.5556 –0.0218 0.1419 0.0205

�  0.3853 0.0853 0.0620 0.0111 0.3018 0.0018 0.0768 0.0059

�  0.4529 –0.0471 0.1039 0.0130 0.5634 0.0634 0.1327 0.0216

�(�)  MISE = 0.0347 MISE = 0.1088

(20, 10) �
1

0.5775 0.0002 0.0325 0.0011 0.5666 –0.0108 0.1111 0.0124

�
2

0.5775 0.0002 0.0325 0.0011 0.5666 –0.0108 0.1111 0.0124

�
3

0.5755 –0.0018 0.0330 0.0011 0.5666 –0.0108 0.1054 0.0112

�  0.3636 0.0636 0.0424 0.0058 0.3075 0.0075 0.0547 0.0030

�  0.4743 –0.0257 0.0633 0.0047 0.5887 0.0887 0.0742 0.0133

�(�)  MISE = 0.0143 MISE = 0.0681

(20, 20) �
1

 0.5770 –0.0004 0.0236 0.0006 0.5662 –0.0112 0.0947 0.0090

�
2

 0.5774 0.0001 0.0233 0.0005 0.5664 –0.0110 0.0846 0.0072

�
3

 0.5761 –0.0012 0.0252 0.0006 0.5792 –0.0018 0.0839 0.0070

�  0.3524 0.0524 0.0297 0.0036 0.3003 0.0003 0.0332 0.0011

�  0.4774 –0.0226 0.0655 0.0048 0.5820 0.0820 0.0757 0.0124

�(�) MISE = 0.0128 MISE = 0.0591
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6. An Illustration Example

In this section, we take the well-known Boston housing price data as a real example to illustrate the
application of the proposed model and its estimation and test methods. The data consist of 506
observations of the median value (MV) of owner-occupied homes in 506 census tracts in the Boston
Standard Metropolitan Statistical Area in 1970, together with 13 variables which might explain the
variation of housing value (Harrison and Rubinfeld, 1978), and are now freely available through
the GeoDa Center for Geospatial Analysis and Computation. The detailed description of these
variables is summarized in Table 7.

In the literature of statistics, many researchers employed the semiparametric regression models
with single-index term to analyze the Boston housing data. For example, Kong and Xia (2012)
explored the relationship between the median value of owner-occupied homes and the remaining
13 variables by using a single-index quantile regression model. However, the single-index regression
model may be inappropriate to fit the data because some variables may have linear influence on the
housing price. To identify which variables have linear influence on the housing price, Zhang et al.
(2011) first employed an additive model to fit the data and then applied a variable selection procedure
to decide which variables have linear influence on the housing price. They concluded that variables
RAD and PTRATIO have linear influence on the response variable, variables CRIM, NOX, RM,
DIS, TAX and LSTAT have nonlinear influence on housing price, while the remaining five variables
ZN, INDUS, CHAS, AGE and B were removed from the final model as insignificant variables. On

Table 7: Description of variables in Boston housing price data.

Variable Description

MV Median value of owner-occupied homes in $1,000 per tract

CRIM Per capita crime rate per tract

ZN Proportion of a town’s residential land zoned for lots greater than 25,000 square feet

INDUS Proportion of non-retail business acres per town

CHAS Charles River dummy variable (= 1 if tract bounds the Charles River; 0 otherwise)

NOX Nitrogen oxide concentration in pphm per town

RM Average number of rooms per dwelling

AGE Proportion of owner-occupied homes built prior to 1940 per tract

DIS Weighted average of distances of a tract to five employment centers in the Boston region

RAD Index of a town’s accessibility to radial highways

TAX  Full-value property tax rate per $10,000 per town

PTRATIO Pupil-teacher ratio by town school district

B 1000(Bk – 0.63)2 in which Bk is the proportion of blacks per tract

LSTAT Proportion of population that is in the lower status per tract
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the other hand, according to the analysis results of many researchers (Pace and Gilley, 1997; Lesage
and Pace, 2009; Li and Mei, 2013; Sun et al., 2014; Du et al., 2018; Liu et al., 2018), the spatial
dependence of the median value of owner-occupied homes is a non-ignorable factor that should be
considered in the analysis of the Boston housing data.

To take the spatial effects into account and allow more flexible interpretation of the
nonparametric component, we consider to fit the data via the following model

� � ,   1, , ,T T
i ij j i i i

j i

Y w Y X Z i n
�

� � � � �� � � � �� � (25)

where n = 506, Z = log(log(CRIM), NOX, RM, DIS, log(TAX), log(LSTAT))T, X = log(RAD,
PTRATIO)T and Y = log (MV). The reason for taking the logarithm of MV as the response variable,
instead of MV itself, is that the correlation of log(MV) with the variables log(CRIM), DIS, RAD
and log(TAX) is much stronger than that of MV with these variables. The correlation coefficient
with log(MV) is –0.5719 for log(CRIM), 0.3425 for DIS, –0.4868 for RAD and –0.5619 for
log(TAX), whereas the correlation coefficient with MV is –04573 for log(CRIM), 0.2493 for DIS,
–0.3848 for RAD and –0.4783 for log(TAX). Another reason for using the logarithm of CRIM as
the explanatory variable is that the observations of CRIM are uniformly distributed on the interval
(–6, 6) with the aid of logarithmic transformation, which can be witnessed as well from Figures
1(a) and 1(b). By comparison, the logarithmic transformation for variables TAX and LSTAT is
taken only to alleviate the trouble caused by big gaps in the domain, which can be seen from
Figures 1(c)-1(f).

As for the choice of the spatial weight matrix W = (w
ij
), following the practice in Pace and

Gilley (1997), we take the element w
ij
 of W to be

0

max 1 ,0 ,ij
ij

d
w

d

� �
� �� �

� �
(26)

where d
ij
 is the Euclidean distance calculated in terms of the longitude and latitude coordinates of

census tract, and d0 is a threshold distance which is used to control the degree of spatial dependence
of the response variable. If the distance between two census tracts is far enough, the spatial
dependence between them will probably attenuate. In order to alleviate the potential effect of tiny
weights on the data analysis, a threshold distance is used to set the tiny weights to be zero.
Furthermore, we normalize the spatial weight matrix such that the sum of each row of W is equal to
1. In our analysis, we take the value of d0 to be 0.05, which yields a spatial weight matrix with
19.1% nonzero elements.

We first apply the proposed test method to check the linearity of the link function �(�) in model
(25), in which m = 1000 bootstrap samples were drawn to compute the p-value of the test. The
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resulting p-value is 0, which indicates that we should reject the null hypothesis of linearity. This
provides strong evidence that model (25) is more appropriate than the traditional linear spatial
autoregressive model for fitting the Boston housing price data.

Then we use the proposed estimation method to estimate the unknown parameters and function
in model (25). The estimators of the parameter vector � and the link function �(�) are reported in
Table 8 and Figure 2, respectively.

We summary some interesting empirical findings from the above analysis as follows. First, the
estimated link function shows evident nonlinear decreasing trend as the value of ˆTZ �  increases,
which together with the estimate of � indicate that the explanatory variables log(CRIM), NOX,

Fugure 1: The scatter plots of log(MV) versus CRIM, log (CRIM), TAX, log(TAX), LSTAT and
log(LSTAT).
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DIS, log(TAX) and log(LSTAT) in the nonparametric component have negative impact on the
housing price, while the influence of the explanatory variable RM is positive. Among them, NOX,
and  are three very influential adverse factors on the housing price. This is reasonable because
people prefer for better air quality, lower TAT and higher educational status neighborhoods. Second,
the estimated regression coefficient of X1 is positive, which indicates that the accessibility to radial
highways (RAD) has a positive impact on the housing price. This is reasonable because the larger
the value of RAD is, the less time will be spent on commuting. The estimated regression coefficient
of X2 is negative, which reveals that the housing price would decrease as the pupil-teacher ratio
increases. Although the relation between PTRATIO and school quality is not completely clear, a
lower PTRATIO should imply more individual attention from the teacher. Third, the estimated
spatial autoregressive parameter is 0.2379, which means that the housing prices in a neighborhood
do affect each other. This is a true phenomenon in real world.

Table 8: Estimated parameter vector  in model (25).

�����1 �
2

�
3

�
4

�
5

�
6

�
1

�
2

� �2

0.0882 0.3854 –0.0643 0.0945 0.6441 0.6448 0.0259 –0.0274 0.2379 0.0310

Fugure 2: The estimated link function in model (25)
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7. Concluding Remarks

In this paper, we developed a new estimation method for the partially linear single-index spatial
autoregressive model by combining the local linear smoothing method and the quasi-maximum
likelihood method. The greatest advantage of our estimation method over the existing semiparametric
GMM estimation method of Sun and Wu (2018) and Cheng et al. (2019) is that there is no need to
select the instrumental variables. In comparison with the semiparametric GMM estimation method
of Sun and Wu (2018) and Cheng et al. (2019), our estimation method has the following two
drawbacks. First, our method requires the model error terms to be independent and identically
distributed, which is rather restrictive in some empirical applications. Second, it is very difficult to
extend our method to model (1) with multiple spatial weight matrices. Furthermore, a generalized
likelihood ratio test was proposed to check the parametric form of the link function, in which a
residual-based bootstrap procedure was suggested to calculate the p-value of the proposed test. The
simulation studies show that the proposed estimation and test methods work well in finite samples.
The Boston housing price data were analyzed to illustrate the application of the partially linear
single-index spatial autoregressive model and its estimation and test methods, which led to some
interesting empirical findings.

Two interesting future research topics about the partially linear single-index spatial
autoregressive model should be mentioned. First, one fundamental issue in the partially linear
single-index spatial autoregressive model is the structure identification or model selection, that is,
how to determine which explanatory variables have linear impact on the response variable and
which ones are of nonlinear impact on the response variable. In practice, data analysts usually
assume a model structure according to their prior knowledge and then make estimation and inference
based on the assumed model structure. However, such prior knowledge is rarely available, especially
when the number of explanatory variables is large. As a consequence, we will face the dangers of
model misspecification if we erroneously incorporate a explanatory variable which has nonlinear
impact on the response variable into the linear part of the regression function and of loss of efficiency
if we erroneously incorporate a explanatory variable which has linear impact on the response variable
into the nonlinear part of the regression function. Thus, determining which explanatory variables
have linear impact on the response variable is critical prior to the use of the partially linear single-
index spatial autoregressive model. Moreover, during the initial stage of modeling, one often includes
as many explanatory variables as possible to avoid misspecification due to the exclusion of the
important explanatory variables from the model. However, including excessive unimportant
explanatory variables in the model may decrease the efficiency of estimation and test and hence the
precision of prediction. Hence, after correctly specifying the model structure of the partially linear
single-index spatial autoregressive model, one needs to further select the important explanatory
variables in both parametric and nonparametric component to increase the efficiency of estimation
and test and finally the precision of prediction.

Second, the current studies about the partially linear single-index spatial autoregressive model
all assumed that the spatial weight matrix is exogenous. This exogenous assumption is reasonable
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if the spatial weight matrix is constructed based on contiguity or geographic distances among
spatial units. However, in some practical applications especially in the field of economics, it is
much better to construct the spatial weight matrix by using economic or socioeconomic distances.
In this case, the spatial weight matrix is likely to be endogenous. Thus, it is appealing and necessary
to study the estimation and related test problems of the partially linear single-index spatial
autoregressive model with an endogenous spatial weight matrix.
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